ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 19
Principles of Digital Communications
Solutions to Problem Set 8
Solution 1. First we compute T_{s}, which is the duration of one bit:

$$
T_{s}=\frac{1}{1 \mathrm{Mbps}}=10^{-6} \mathrm{~s}
$$

Now, we can calculate the energy of the signal (i.e. the energy per bit), which is the same for every j :

$$
\mathcal{E}_{b}=b^{2} T_{s}
$$

The bit error probability is given by $Q\left(\frac{\sqrt{\mathcal{E}}}{\sigma}\right)$. In our case $\sigma=\sqrt{N_{0} / 2}=10^{-1}$, thus we need to solve

$$
10^{-5}=Q\left(\frac{10^{-3} \times b}{10^{-1}}\right)=Q\left(10^{-2} \times b\right)
$$

hence $b=Q^{-1}\left(10^{-5}\right) \times 10^{2} \approx 426.5$.
Solution 2.
(a) There are various possibilities to choose an orthogonal basis. One is $\phi_{1}(t)=\frac{w_{0}(t)}{\left\|w_{0}\right\|}=$ $\sqrt{\frac{1}{T_{s}}} w_{0}(t)$ and $\phi_{2}(t)=\frac{w_{2}(t)}{\left\|w_{2}\right\|}=\sqrt{\frac{1}{T_{s}}} w_{2}(t)$. Another choice, that we prefer and will be our choice in this solution is

$$
\begin{aligned}
\psi_{1}(t) & =\sqrt{\frac{2}{T_{s}}} \mathbb{1}_{\left[0, \frac{T_{s}}{2}\right]}(t) \\
\psi_{2}(t) & =\sqrt{\frac{2}{T_{s}}} \mathbb{1}_{\left[\frac{T_{s}}{2}, T_{s}\right]}(t) .
\end{aligned}
$$

With the latter choice the signal space is

$$
\begin{array}{ll}
w_{0}=\sqrt{\frac{T_{s}}{2}}(1,1)^{\top} & w_{2}=\sqrt{\frac{T_{s}}{2}}(1,-1)^{\top} \\
w_{1}=\sqrt{\frac{T_{s}}{2}}(-1,-1)^{\top} & w_{3}=\sqrt{\frac{T_{s}}{2}}(-1,1)^{\top}
\end{array}
$$

(b) $U_{0} \in\{ \pm 1\}$ and $U_{1} \in\{ \pm 1\}$ are mapped into

$$
U_{0} \sqrt{\frac{T_{s}}{2}} \psi_{1}(t)+U_{1} \sqrt{\frac{T_{s}}{2}} \psi_{2}(t)
$$

The mapping is shown below:

The mapping is such that neighboring points differ by one bit. This minimizes the biterror probability since when we make an error chances are that we choose a neighbor of the correct symbol. Notice that we may decode each bit independently. In fact the first bit is decoded to a 1 iff the observation is to the right of the vertical axis and the second bit is 1 iff it is above the horizontal axis. The bit error probability is therefore

$$
P_{b}=Q\left(\frac{\sqrt{T_{s} / 2}}{\sqrt{N_{0} / 2}}\right)=Q\left(\sqrt{\frac{T_{s}}{N_{0}}}\right) .
$$

(c) Notice that $\psi_{2}(t)=\psi_{1}\left(t-\frac{T_{s}}{2}\right)$. Hence one matched filter is enough. The receiver block diagram is:

(d) $\mathcal{E}_{b}=\frac{\mathcal{E}_{s}}{2}=\frac{T_{s}}{2}$ and the power is $\frac{\mathcal{E}_{s}}{T_{s}}=1$.

Solution 3.
(a) Using the identity $\cos ^{2}(a)=\frac{1}{2}[1+\cos (2 a)]$, the average energy can be computed as

$$
\begin{align*}
\int_{-\infty}^{\infty}\left|w_{i}(t)\right|^{2} d t & =\frac{2 \mathcal{E}}{T} \int_{0}^{T} \cos ^{2}\left(2 \pi\left(f_{c}+i \Delta f\right) t\right) d t \\
& =\frac{2 \mathcal{E}}{T}\left[\frac{t}{2}+\frac{\sin \left(4 \pi\left(f_{c}+i \Delta f\right) t\right)}{8 \pi\left(f_{c}+i \Delta f\right)}\right]_{0}^{T} \\
& =\mathcal{E}\left[1+\frac{\sin (4 \pi i \Delta f T)}{4 \pi T\left(f_{c}+i \Delta f\right)}\right] \approx \mathcal{E} \tag{*}
\end{align*}
$$

The last approximation follows since $f_{c} \gg \Delta f$ implies the second term in the square brackets is negligible.
(b) Orthogonality requires

$$
\mathcal{E} \frac{2}{T} \int_{0}^{T} \cos \left(2 \pi\left(f_{c}+i \Delta f\right) t\right) \cos \left(2 \pi\left(f_{c}+j \Delta f\right) t\right) d t=0
$$

for every $i \neq j$. Using the trigonometric identity $\cos (\alpha) \cos (\beta)=\frac{1}{2} \cos (\alpha+\beta)+\frac{1}{2} \cos (\alpha-$ β), an equivalent condition is

$$
\frac{\mathcal{E}}{T} \int_{0}^{T}\left[\cos (2 \pi(i-j) \Delta f t)+\cos \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) t\right)\right] d t=0
$$

Integrating we obtain

$$
\frac{\mathcal{E}}{T}\left[\frac{\sin (2 \pi(i-j) \Delta f T)}{2 \pi(i-j) \Delta f}+\frac{\sin \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) T\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]=0 .
$$

As $f_{c} T$ is assumed to be an integer, the result can be simplified to

$$
\frac{\mathcal{E}}{T}\left[\frac{\sin (2 \pi(i-j) \Delta f T)}{2 \pi(i-j) \Delta f}+\frac{\sin (2 \pi(i+j) \Delta f T)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]=0 .
$$

As i and j are integer, this is satisfied for $i \neq j$ if and only if $2 \pi \Delta f T$ is an integer multiple of π. Hence, we obtain the minimum value of Δf if $2 \pi \Delta f T=\pi$ which gives $\Delta f=\frac{1}{2 T}$. Note that once Δf is an integer multiple of $\frac{1}{2 T}$ the approximate equality in $(*)$ will be exact.
(c) Proceeding similarly, we will have orthogonality if and only if

$$
\begin{aligned}
\frac{\mathcal{E}}{T}\left[\frac{\sin \left(2 \pi(i-j) \Delta f T+\theta_{i}-\theta_{j}\right)-\sin \left(\theta_{i}-\theta_{j}\right)}{2 \pi(i-j) \Delta f}\right. & \\
& \left.+\frac{\sin \left(2 \pi(i+j) \Delta f T+\theta_{i}+\theta_{j}\right)-\sin \left(\theta_{i}+\theta_{j}\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]=0
\end{aligned}
$$

In this case we see that both parts become zero if and only if $2 \pi \Delta f T$ is an even multiple of π, meaning that the smallest Δf is $\Delta f=\frac{1}{T}$ which is twice the minimum frequency separation needed in the previous part. Hence, the cost of phase uncertainty is a bandwidth expansion by a factor of 2 .
(d) The condition for essential orthogonality is that

$$
\begin{aligned}
& \frac{\mathcal{E}}{T}\left[\frac{\sin \left(2 \pi(i-j) \Delta f T+\theta_{i}-\theta_{j}\right)-\sin \left(\theta_{i}-\theta_{j}\right)}{2 \pi(i-j) \Delta f}\right] \\
& +\frac{\mathcal{E}}{T}\left[\frac{\sin \left(2 \pi\left(2 f_{c}+(i+j) \Delta f T\right)+\theta_{i}+\theta_{j}\right)-\sin \left(\theta_{i}+\theta_{j}\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]
\end{aligned}
$$

is small compared to the signal's energy \mathcal{E}. The first term vanishes if $\Delta f=\frac{1}{T}$. The second term is very small compared to \mathcal{E} if $f_{c} T \gg 1$.
(e) We have m signals separated by Δf. The approximate bandwidth is $m \Delta f$. This means bandwidth $\frac{2^{k}}{2 T}$ without random phase, and bandwidth $\frac{2^{k}}{T}$ with random phase. We see that in both cases, $W T$ is proportional to 2^{k}, i.e. it grows exponentially with k.

Solution 4.

(a) The block diagram is shown below:

(b) Given $A=a$, the distance of signals is $2 a \sqrt{\mathcal{E}_{b}}$, hence

$$
P_{e}(a)=Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) .
$$

(c)

$$
P_{f}=\mathbb{E}\left[P_{e}(a)\right]=\int_{0}^{\infty} Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) 2 a e^{-a^{2}} d a
$$

We integrate by parts, noting that $\int 2 a e^{-a^{2}} d a=-e^{-a^{2}}$:

$$
P_{f}=-\left.Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) e^{-a^{2}}\right|_{0} ^{\infty}+\int_{0}^{\infty} Q^{\prime}\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) e^{-a^{2}} d a .
$$

Taking the derivative of an integral with respect to the lower boundary gives the negative of the value of the integrand evaluated at the lower boundary, i.e.,

$$
Q^{\prime}(x)=-\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Thus, for the derivative of $Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)$ with respect to a, we can write

$$
\frac{d}{d a} Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)=-\frac{1}{\sqrt{2 \pi}} e^{-\frac{a^{2} \mathcal{E}_{b}}{N_{0}}} \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}} .
$$

Plugging this in, we find

$$
P_{f}=\frac{1}{2}-\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}} e^{-a^{2}\left(\frac{\varepsilon_{b}}{N_{0}}+1\right)} d a
$$

which we now reshape to make it an integral over a Gaussian density, as follows:

$$
P_{f}=\frac{1}{2}-\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}} \frac{1}{\sqrt{2\left(\frac{\mathcal{E}_{b}}{N_{0}}+1\right)}} \int_{0}^{\infty} \frac{1}{\sqrt{\frac{\pi}{\left(\frac{\varepsilon_{b}}{N_{0}}+1\right)}}} \exp \left(-\frac{a^{2}}{2 \frac{1}{2\left(\frac{\mathcal{E}_{b}}{N_{0}}+1\right)}}\right) d a .
$$

Now, it is clear that the integral evaluates to one half (since the integral is only over half of the real line), and we find

$$
P_{f}=\frac{1}{2}-\frac{1}{2} \sqrt{\frac{\mathcal{E}_{b} / N_{0}}{1+\mathcal{E}_{b} / N_{0}}}=\frac{1}{2}\left(1-\sqrt{\frac{\mathcal{E}_{b} / N_{0}}{1+\mathcal{E}_{b} / N_{0}}}\right) .
$$

(d) Let $\sigma=\frac{1}{\sqrt{2}}$, then

$$
m=\mathbb{E}[A]=\int_{0}^{\infty} 2 a^{2} e^{-a^{2}} d a=2 \sqrt{\pi} \int_{0}^{\infty} a^{2} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{a^{2}}{2 \sigma^{2}}} d a=\sqrt{\pi} \sigma^{2}=\frac{\sqrt{\pi}}{2} .
$$

Thus, using the formula from part (b):

$$
P_{e}(m)=Q\left(m \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)=Q\left(\sqrt{\frac{\pi}{2}} \sqrt{\frac{\mathcal{E}_{b}}{N_{0}}}\right) .
$$

For the given example we get

$$
\frac{\mathcal{E}_{b}}{N_{0}}=\frac{2\left(Q^{-1}\left(10^{-5}\right)\right)^{2}}{\pi} \approx 10.6 \mathrm{~dB}
$$

For the fading we use the result of part (c) to get

$$
\frac{\mathcal{E}_{b}}{N_{0}}=\frac{\left(1-2 \cdot 10^{-5}\right)^{2}}{1-\left(1-2 \times^{-5}\right)^{2}} \approx 44 \mathrm{~dB}
$$

The difference is quite significant! It is clear that this behaviour is fundamentally different from the non-fading case.

Solution 5.

(a) In this basis the signal representations are $c_{1}=(2,0,0,2)^{\top}, c_{2}=(0,2,2,0)^{\top}, c_{3}=$ $(2,0,2,0)^{\top}, c_{4}=(0,2,0,2)^{\top}$.
(b) The union bound is expressed in terms of the pairwise distances $d_{i j}$ between the signals since

$$
P_{e}(i) \leq \sum_{j \neq i} Q\left(\frac{d_{i j}}{2 \sigma}\right)
$$

From (a) we observe that $d_{12}^{2}=d_{34}^{2}=16$ and $d_{13}^{2}=d_{14}^{2}=d_{23}^{2}=d_{24}^{2}=8$, hence

$$
P_{e}(i) \leq 2 Q\left(\frac{2}{\sqrt{N_{0}}}\right)+Q\left(\frac{2 \sqrt{2}}{\sqrt{N_{0}}}\right)
$$

Since $P_{e}(i)$ does not depend on i, it also bounds the average error probability.
(c) The minimum-energy signal set is obtained by subtracting from $\left\{w_{i}(t)\right\}_{i=1}^{4}$ the average signal $a(t)=\frac{1}{4} \sum_{i=1}^{4} w_{i}(t)=\mathbb{1}_{[0,4]}(t)$. The resulting signals are shown below.

(d) Note that in the new signal set $\tilde{w}_{2}(t)=-\tilde{w}_{1}(t)$ and $\tilde{w}_{4}(t)=-\tilde{w}_{3}(t)$. Furthermore the signals $\tilde{w}_{1}(t)$ and $\tilde{w}_{3}(t)$ are orthogonal. Thus the new signal space is two-dimensional, and the Gram-Schmidt procedure will produce the orthonormal basis $\tilde{\psi}_{1}(t)=\frac{\tilde{w}_{1}(t)}{\left\|\tilde{w}_{1}\right\|}=$ $\frac{1}{2} \tilde{w}_{1}(t)$ and $\tilde{\psi}_{2}(t)=\frac{\tilde{w}_{3}(t)}{\left\|\tilde{w}_{3}\right\|}=\frac{1}{2} \tilde{w}_{3}(t)$.
(e) In the new basis the signal representations are $\tilde{c}_{1}=(2,0)^{\top}, \tilde{c}_{2}=(-2,0)^{\top}, \tilde{c}_{3}=$ $(0,2)^{\top}, \tilde{c}_{4}=(0,-2)^{\top}$. These codewords correspond to those of the 4-QAM constellation (rotated by 45 degrees). The error probability of this set is

$$
P_{e}=1-\left[1-Q\left(\frac{2}{\sqrt{N_{0}}}\right)\right]^{2}=2 Q\left(\frac{2}{\sqrt{N_{0}}}\right)-Q\left(\frac{2}{\sqrt{N_{0}}}\right)^{2}
$$

(f) Since translations of a signal set do not change the probability of error, the error probability of the receiver in (b) is equal to that in (e).

Solution 6.

(a) Clearly,

$$
\mathcal{E}_{s}^{C}(k)=2^{2 k}-1 .
$$

(b)

$$
a=Q^{-1}\left(\frac{10^{-5}}{2}\right) \approx 4.42
$$

(From the suggested approximation we get $a \approx 4.80$.)
(c) For comparison, see the following table.

k	$\mathcal{E}_{s}^{P}(k)$	$\mathcal{E}_{s}^{C}(k)$
1	19.54	3
2	97.68	15
4	1660	255

(d) We see that

$$
\frac{\mathcal{E}_{s}^{C}(k+1)}{\mathcal{E}_{s}^{C}(k)}=\frac{\mathcal{E}_{s}^{P}(k+1)}{\mathcal{E}_{s}^{P}(k)}=\frac{2^{2(k+1)}-1}{2^{2 k}-1}
$$

thus

$$
\lim _{k \rightarrow \infty} \frac{\mathcal{E}_{s}^{C}(k+1)}{\mathcal{E}_{s}^{C}(k)}=\lim _{k \rightarrow \infty} \frac{\mathcal{E}_{s}^{P}(k+1)}{\mathcal{E}_{s}^{P}(k)}=4
$$

(e) If we send one bit per symbol, then coding allows us to significantly reduce the required energy per symbol. For every additional bit per symbol we need to multiply \mathcal{E}_{s} by roughly 4 (exactly 4 asymptotically) with or without coding. So as the number of bits per symbol increases, there is essentially a constant gap (in dB) between the energy per symbol required by (uncoded) PAM and that required by the best possible code.
Notice that to keep the error probability at a constant level, we need to increase $\mathcal{E}_{s} / \sigma^{2}$ exponentially with the number k of bits per symbol. In Example 4.3 in the book we increase it linearly with k (hence the error probability goes to 1).

