ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 13
Principles of Digital Communications
Solutions to Problem Set 6
Mar. 31, 2023

Solution 1.

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will select, and your decision will be based on the observation of \hat{H}_{L} and \hat{H}_{R}. Let H take value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can write the MAP decision rule as follows:

$$
\operatorname{Pr}\left\{H=1 \mid \hat{H}_{L}=1, \hat{H}_{R}=2\right\} \underset{\hat{H}=2}{\stackrel{\hat{H}=1}{\gtrless}} \operatorname{Pr}\left\{H=2 \mid \hat{H}_{L}=1, \hat{H}_{R}=2\right\}
$$

From the problem setting we know the priors $\operatorname{Pr}\{H=1\}$ and $\operatorname{Pr}\{H=2\}$; we can also determine the conditional probabilities $\operatorname{Pr}\left\{\hat{H}_{L}=1 \mid H=1\right\}, \operatorname{Pr}\left\{\hat{H}_{L}=1 \mid H=2\right\}$, $\operatorname{Pr}\left\{\hat{H}_{R}=2 \mid H=1\right\}$ and $\operatorname{Pr}\left\{\hat{H}_{R}=2 \mid H=2\right\}$ (we have $\operatorname{Pr}\left\{\hat{H}_{L}=1 \mid H=1\right\}=0.9$ and $\operatorname{Pr}\left\{\hat{H}_{L}=1 \mid H=2\right\}=0.1$). Introducing these quantities and using the Bayes rule we can formulate the MAP decision rule as

$$
\frac{\operatorname{Pr}\left\{\hat{H}_{L}=1, \hat{H}_{R}=2 \mid H=1\right\} \operatorname{Pr}\{H=1\}}{\operatorname{Pr}\left\{\hat{H}_{L}=1, \hat{H}_{R}=2\right\}}{\underset{\hat{H}=2}{\hat{H}=1}}_{\stackrel{\hat{H}}{\gtrless}}^{\frac{\operatorname{Pr}\left\{\hat{H}_{L}=1, \hat{H}_{R}=2 \mid H=2\right\} \operatorname{Pr}\{H=2\}}{\operatorname{Pr}\left\{\hat{H}_{L}=1, \hat{H}_{R}=2\right\}}}
$$

Now, assuming that the event $\left\{\hat{H}_{L}=1\right\}$ is independent of the event $\left\{\hat{H}_{R}=2\right\}$ and simplifying the expression, we obtain

$$
\begin{gathered}
\operatorname{Pr}\left\{\hat{H}_{L}=1 \mid H=1\right\} \operatorname{Pr}\left\{\hat{H}_{R}=2 \mid H=1\right\} \operatorname{Pr}\{H=1\} \stackrel{\substack{\hat{H}=1}}{\gtrless}, ~ \\
\operatorname{Pr}\left\{\hat{H}_{L}=1 \mid H=2\right\} \operatorname{Pr}\left\{\hat{H}_{R}=2 \mid H=2\right\} \operatorname{Pr}\{H=2\},
\end{gathered}
$$

which is our final decision rule.
(b) Evaluating the previous decision rule, we have

$$
0.9 \times 0.3 \times 0.25 \stackrel{\hat{H}=1}{\underset{\hat{H}=2}{\gtrless}} 0.1 \times 0.7 \times 0.75,
$$

which gives

$$
0.0675 \underset{\hat{H}=2}{\stackrel{\hat{H}=1}{\gtrless}} 0.0525
$$

This implies that the answer \hat{H} is equal to 1 .

Solution 2.
(a) We can write the MAP decision rule in the following way:

$$
\frac{P_{Y \mid H}(y \mid 1)}{P_{Y \mid H}(y \mid 0)} \stackrel{\hat{H}=1}{\gtrless} \frac{P_{H}(0)}{P_{H}(1)}
$$

Plugging in, we find

$$
\frac{\lambda_{1}^{y} e^{-\lambda_{1}}}{\lambda_{0}^{y} e^{-\lambda_{0}}} \stackrel{\hat{H}=1}{\gtrless} \frac{p_{0}}{1-p_{0}},
$$

and then

$$
\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{y} \stackrel{\hat{H}=1}{\gtrless} \frac{p_{0}}{1-p_{0}} e^{\lambda_{1}-\lambda_{0}}
$$

Taking logarithms on both sides does not change the direction of the inequalities, therefore

$$
y \log \left(\frac{\lambda_{1}}{\lambda_{0}}\right) \stackrel{\hat{H}=1}{\gtrless} \log \left(\frac{p_{0}}{1-p_{0}} e^{\lambda_{1}-\lambda_{0}}\right)
$$

Attention: the term $\log \left(\lambda_{1} / \lambda_{0}\right)$ can be negative, and if it is, then dividing by it involves changing the direction of the inequality.
Suppose $\lambda_{1}>\lambda_{0}$. Then, $\log \left(\lambda_{1} / \lambda_{0}\right)>0$, and the decision rule becomes

$$
y \underset{\hat{H}=0}{\stackrel{\hat{H}=1}{\gtrless}} \frac{\log \left(\frac{p_{0}}{1-p_{0}} e^{\lambda_{1}-\lambda_{0}}\right)}{\log \left(\frac{\lambda_{1}}{\lambda_{0}}\right)} \stackrel{\text { def }}{=} \theta
$$

(b) We compute

$$
\begin{aligned}
P_{e}(0) & =\operatorname{Pr}\{Y>\theta \mid H=0\}=\sum_{y=\lceil\theta\rceil}^{\infty} P_{Y \mid H}(y \mid 0) \\
& =1-\sum_{y=0}^{\lfloor\theta\rfloor} \frac{\lambda_{0}^{y}}{y!} e^{-\lambda_{0}}
\end{aligned}
$$

and by analogy

$$
\begin{aligned}
P_{e}(1) & =\operatorname{Pr}\{Y<\theta \mid H=1\}=\sum_{y=0}^{\lfloor\theta\rfloor} P_{Y \mid H}(y \mid 1) \\
& =\sum_{y=0}^{\lfloor\theta\rfloor} \frac{\lambda_{1}^{y}}{y!} e^{-\lambda_{1}}
\end{aligned}
$$

Thus, the probability of error becomes

$$
P_{e}=p_{0}\left(1-\sum_{y=0}^{\lfloor\theta\rfloor} \frac{\lambda_{0}^{y}}{y!} e^{-\lambda_{0}}\right)+\left(1-p_{0}\right) \sum_{y=0}^{\lfloor\theta\rfloor} \frac{\lambda_{1}^{y}}{y!} e^{-\lambda_{1}}
$$

Now, suppose that $\lambda_{1}<\lambda_{0}$. Then, $\log \left(\lambda_{1} / \lambda_{0}\right)<0$, and we have to swap the inequality sign, thus

The rest of the analysis goes along the same lines, and finally, we obtain

$$
P_{e}=p_{0} \sum_{y=0}^{\lfloor\theta\rfloor} \frac{\lambda_{0}^{y}}{y!} e^{-\lambda_{0}}+\left(1-p_{0}\right)\left(1-\sum_{y=0}^{\lfloor\theta\rfloor} \frac{\lambda_{1}^{y}}{y!} e^{-\lambda_{1}}\right)
$$

The case $\lambda_{0}=\lambda_{1}$ yields $\log \left(\lambda_{1} / \lambda_{0}\right)=0$, so the decision rule becomes $0 \stackrel{\hat{H}=1}{\gtrless} \theta$, regardless of y. Thus, we can exclude the case $\lambda_{0}=\lambda_{1}$ from our discussion.
(c) Here, we are in the case $\lambda_{1}>\lambda_{0}$, and we find $\theta \approx 4.54$. We thus evaluate

$$
P_{e}=\frac{1}{3}\left(1-\sum_{y=0}^{4} \frac{2^{y}}{y!} e^{-2}\right)+\frac{2}{3} \sum_{y=0}^{4}\left(\frac{10^{y}}{y!} e^{-10}\right) \approx 0.03705
$$

(d) We find $\theta \approx 7.5163$

$$
P_{e}=\frac{1}{3}\left(1-\sum_{y=0}^{7} \frac{2^{y}}{y!} e^{-2}\right)+\frac{2}{3} \sum_{y=0}^{7}\left(\frac{20^{y}}{y!} e^{-20}\right) \approx 0.000885
$$

The two Poisson distributions are much better separated than in (c); therefore, it becomes considerably easier to distinguish them based on one single observation y.

Solution 3. We use the Fisher-Neyman factorization theorem.
(a) Since Y is an i.i.d. sequence,

$$
\begin{aligned}
P_{Y \mid H}(y \mid i)=\prod_{k=1}^{n} P_{Y_{k} \mid H}\left(y_{k} \mid i\right) & =\frac{\lambda_{i}^{\sum_{k=1}^{n} y_{k}}}{\prod_{k=1}^{n}\left(y_{k}\right)!} e^{-n \lambda_{i}} \\
& =\underbrace{e^{-n \lambda_{i}} \lambda_{i}^{n\left(\frac{1}{n} \sum_{k=1}^{n} y_{k}\right)}}_{g_{i}(T(y))} \underbrace{\prod_{k=1}^{n}\left(y_{k}\right)!}_{h(y)}
\end{aligned}
$$

(b) Since Z_{1}, \ldots, Z_{n} are i.i.d. additive noise samples,

$$
\begin{aligned}
f_{Y \mid H}(y \mid i)=\prod_{k=1}^{n} f_{Z_{k} \mid H}\left(y_{k}-\theta_{i}\right) & =\prod_{k=1}^{n} \lambda_{i} e^{-\lambda_{i}\left(y_{k}-\theta_{i}\right)} \mathbb{1}\left\{y_{k} \geq \theta_{i}\right\} \\
& =\underbrace{\lambda_{i}^{n} e^{n \lambda_{i} \theta_{i}} e^{-n \lambda_{i}\left(\frac{1}{n} \sum_{k=1}^{n} y_{k}\right)} \mathbb{1}\left\{\min \left\{y_{1}, \ldots, y_{n}\right\} \geq \theta_{i}\right\}}_{g_{i}(T(y))}
\end{aligned}
$$

with $h(y)=1$.

Solution 4.

(a) It is straightforward to check that $w_{0}(t)$ has unit norm, i.e., $\left\|w_{0}(t)\right\|=1$, thus $\psi_{1}(t)=$ $w_{0}(t)$. With $\psi_{1}(t)$ we can reproduce the first portion of $w_{1}(t)$ (for t between 0 and 1). With $\psi_{2}(t)$ we need to be able to describe the remaining part of $w_{1}(t)$. Clearly $\psi_{2}(t)$ is as illustrated below. With $\psi_{1}(t)$ and $\psi_{2}(t)$ we also describe the part of $w_{2}(t)$ between $t=0$ and $t=2$. Hence $\psi_{3}(t)$ is selected as the unit-norm function that matches the part of $w_{2}(t)$ between $t=2$ and $t=3$. We immediately see that $w_{3}(t)$ is also a linear combination of $\psi_{i}(t), i=1,2,3$.

(b) Using the basis $\left\{\psi_{1}(t), \psi_{2}(t), \psi_{3}(t)\right\}$, one can give the following representation for the waveforms $w_{i}(t), i=0, \ldots, 3$:

$$
w_{0}=(1,0,0)^{\top}, w_{1}=(-1,1,0)^{\top}, w_{2}=(1,1,1)^{\top}, w_{3}=(1,1,-1)^{\top}
$$

Solution 5.

(a) The optimal solution is to pass $R(t)$ through the matched filter $w(T-t)$ and sample the result at $t=T$ to get a sufficient statistic denoted by Y. (In this problem, $T=1$.) Note that $Y=S+N$, where S and N are random variables denoting the signal and the noise components respectively. Under $H=i, Y \sim \mathcal{N}\left(\alpha_{i}, N_{0} / 2\right)$, where $\alpha_{0}, \ldots, \alpha_{3}$ are $3 c, c,-c$ and $-3 c$ respectively.
Let \hat{X} be the recovered signal value at the receiver. Based on the nearest neighbor decision rule, the receiver chooses the value of \hat{X} in the following fashion:

$$
\hat{X}= \begin{cases}+3, & Y \in[2 c, \infty) \tag{1}\\ +1, & Y \in[0,2 c) \\ -1, & Y \in[-2 c, 0) \\ -3, & Y \in[-\infty,-2 c)\end{cases}
$$

(b) The probability of error is given by

$$
\begin{aligned}
P_{e} & =\sum_{i=0}^{3} \frac{1}{4} \operatorname{Pr}\{\operatorname{error} \mid H=i\} \\
& =\frac{1}{4}\left[Q\left(\frac{c}{\sqrt{N_{0} / 2}}\right)+2 Q\left(\frac{c}{\sqrt{N_{0} / 2}}\right)+2 Q\left(\frac{c}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{c}{\sqrt{N_{0} / 2}}\right)\right] \\
& =\frac{3}{2} Q\left(\frac{c}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

(c) In this case under $H=i, Y \sim \mathcal{N}\left(\alpha_{i}, N_{0} / 2\right)$, where $\alpha_{0}, \ldots, \alpha_{3}$ are $\frac{9 c}{4}, \frac{3 c}{4}, \frac{-3 c}{4}$ and $\frac{-9 c}{4}$ respectively. Using the decision rule in (1), the probability of error is given by

$$
\begin{aligned}
P_{e}= & \sum_{i=0}^{3} \frac{1}{4} \operatorname{Pr}\{\operatorname{error} \mid H=i\} \\
= & \frac{1}{4}\left[Q\left(\frac{c / 4}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{5 c / 4}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{3 c / 4}{\sqrt{N_{0} / 2}}\right)\right. \\
& \left.+Q\left(\frac{5 c / 4}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{3 c / 4}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{c / 4}{\sqrt{N_{0} / 2}}\right)\right] \\
= & \frac{1}{2}\left[Q\left(\frac{c / 4}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{3 c / 4}{\sqrt{N_{0} / 2}}\right)+Q\left(\frac{5 c / 4}{\sqrt{N_{0} / 2}}\right)\right]
\end{aligned}
$$

(d) The noise process $N(t)$ is a stationary Gaussian random process. So the noise component N (which is the sample of match-filter output at time T) is a Gaussian random variable with mean

$$
\mathbb{E}[N]=\mathbb{E}\left[\int_{-\infty}^{\infty} N(t) w(t) d t\right]=\mathbb{E}\left[\int_{0}^{1} N(t) d t\right]=0
$$

Because the process $N(t)$ is stationary, without loss of generality we choose the boundaries of the integral to be 0 and T where in this problem $T=1$.

Now, let us calculate the noise variance.

$$
\begin{aligned}
\operatorname{var}(N) & =\mathbb{E}\left[N^{2}\right]-\mathbb{E}[N]^{2}=\mathbb{E}\left[N^{2}\right] \\
& =\mathbb{E}\left[\int_{-\infty}^{\infty} N(t) w(t) d t \int_{-\infty}^{\infty} N(v) w(v) d v\right] \\
& =\mathbb{E}\left[\int_{0}^{1} N(t) d t \int_{0}^{1} N(v) d v\right] \\
& =\mathbb{E}\left[\int_{0}^{1} \int_{0}^{1} N(t) N(v) d t d v\right] \\
& =\int_{0}^{1} \int_{0}^{1} K_{N}(t-v) d t d v \\
& =\int_{0}^{1} \int_{0}^{1} \frac{1}{4 \alpha} e^{-|t-v| / \alpha} d t d v \\
& =\frac{1}{2}\left(\alpha\left(e^{-1 / \alpha}-1\right)+1\right)
\end{aligned}
$$

Thus the new probability of error is given by

$$
\begin{aligned}
P_{e} & =\sum_{i=0}^{3} \frac{1}{4} \operatorname{Pr}\{\operatorname{error} \mid H=i\} \\
& =\frac{1}{4}\left[Q\left(\frac{c}{\sqrt{\operatorname{var}(N)}}\right)+2 Q\left(\frac{c}{\sqrt{\operatorname{var}(N)}}\right)+2 Q\left(\frac{c}{\sqrt{\operatorname{var}(N)}}\right)+Q\left(\frac{c}{\sqrt{\operatorname{var}(N)}}\right)\right] \\
& =\frac{3}{2} Q\left(\frac{c}{\sqrt{\frac{1}{2}\left(\alpha\left(e^{-1 / \alpha}-1\right)+1\right)}}\right)
\end{aligned}
$$

