ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 29
Solutions to Problem Set 12

Solution 1.

(a) (i) The plots are shown below:

(ii) The joint density function is invariant under rotation for $\alpha=2$ only. For this value of α, we have $X, Y \sim \mathcal{N}\left(0, \frac{1}{2}\right)$.
(b) (i) We know that we can write (x, y) in polar coordinates (r, θ). Hence in general the joint distribution of X and Y is a function of r and θ. Because of circular symmetry the joint distribution should not depend on θ, which means that $f_{X, Y}(x, y)$ can be written as a function of r. Hence if we denote this function by ψ and use the independence of X and Y, we have $f_{X}(x) f_{Y}(y)=\psi(r)$.
(ii) Taking the partial derivative with respect to x and using the chain rule for differentiation, we have $f_{X}^{\prime}(x) f_{Y}(y)=\psi^{\prime}(r) \frac{\partial r}{\partial x}=\psi^{\prime}(r) \frac{x}{r}$. If we divide both sides by $x f_{X}(x) f_{Y}(y)$ we have $\frac{f_{X}^{\prime}(x)}{x f_{X}(x)}=\frac{\psi^{\prime}(r)}{r \psi(r)}$. Proceeding similarly for y, we obtain

$$
\frac{f_{X}^{\prime}(x)}{x f_{X}(x)}=\frac{\psi^{\prime}(r)}{r \psi(r)}=\frac{f_{Y}^{\prime}(y)}{y f_{Y}(y)} .
$$

(iii) $\frac{f_{X}^{\prime}(x)}{x f_{X}(x)}$ is a function of x while $\frac{f_{Y}^{\prime}(y)}{y f_{Y}(y)}$ is a function of y. Hence the only way for the equality to hold is that both of them equal a constant. If we denote this constant by $-\frac{1}{\sigma^{2}}$, we reach the final result.
(iv) We have $\frac{f_{X}^{\prime}(x)}{f_{X}(x)}=-\frac{x}{\sigma^{2}}$. Integrating both sides we have $\log \left(\frac{f_{X}(x)}{C}\right)=-\frac{x^{2}}{2 \sigma^{2}}$. Hence $f_{X}(x)=C \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) . \quad f_{X}(x)$ is a probability density function and so should integrate to 1 , which gives $C=\frac{1}{\sqrt{2 \pi \sigma^{2}}}$. Hence $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)$ and by symmetry $f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{y^{2}}{2 \sigma^{2}}\right)$, which shows that X and Y are Gaussian random variables.

Solution 2.

(a) Let $x_{E}(t)=x_{R}(t)+\mathrm{j} x_{I}(t)$. Then

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& =\sqrt{2} \Re\left\{\left[x_{R}(t)+\mathbf{j} x_{I}(t)\right] e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& =\sqrt{2}\left[x_{R}(t) \cos \left(2 \pi f_{c} t\right)-x_{I}(t) \sin \left(2 \pi f_{c} t\right)\right] .
\end{aligned}
$$

Hence, we have

$$
x_{E I}(t)=\sqrt{2} \Re\left\{x_{E}(t)\right\}
$$

and

$$
x_{E Q}(t)=\sqrt{2} \Im\left\{x_{E}(t)\right\} .
$$

(b) Let $x_{E}(t)=\alpha(t) e^{\mathrm{j} \beta(t)}$. Then

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& =\sqrt{2} \Re\left\{\alpha(t) e^{\mathrm{j} \beta(t)} e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& =\sqrt{2} \Re\left\{\alpha(t) e^{\mathrm{j}\left(2 \pi f_{c} t+\beta(t)\right)}\right\} \\
& =\sqrt{2} \alpha(t) \cos \left[2 \pi f_{c} t+\beta(t)\right] .
\end{aligned}
$$

We thus have

$$
x_{E}(t)=\alpha(t) e^{\mathrm{j} \beta(t)}=\frac{a(t)}{\sqrt{2}} e^{\mathrm{j} \theta(t)} .
$$

(c) From (b) we see that

$$
x_{E}(t)=\frac{A(t)}{\sqrt{2}} e^{j \varphi} .
$$

This is consistent with Example 7.9 (DSB-SC) given in the text. We can also verify:

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& =\sqrt{2} \Re\left\{\frac{A(t)}{\sqrt{2}} e^{\mathrm{j} \varphi} e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& =\Re\left\{A(t) e^{\mathrm{j}\left(2 \pi f_{c} t+\varphi\right)}\right\} \\
& =A(t) \cos \left(2 \pi f_{c} t+\varphi\right) .
\end{aligned}
$$

Solution 3.

(a) The key observation is that while $e^{\mathrm{j} 2 \pi f_{1} t}$ and $e^{-\mathrm{j} 2 \pi f_{1} t}$ are two different signals if $f_{1} \neq 0$, $\Re\left\{e^{\mathrm{j} 2 \pi f_{1} t}\right\}$ and $\Re\left\{e^{-\mathrm{j} 2 \pi f_{1} t}\right\}$ are identical.
Therefore, if we fix $f_{1} \neq 0$ and choose $a_{1}(t)$ and $a_{2}(t)$ so that $a_{1}(t) e^{\mathrm{j} 2 \pi f_{c} t}=e^{\mathrm{j} 2 \pi f_{1} t}$ and $a_{2}(t) e^{\mathrm{j} 2 \pi f_{c} t}=e^{-\mathrm{j} 2 \pi f_{1} t}$, we get $a_{1}(t) \neq a_{2}(t)$ and $\Re\left\{a_{1}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\}=\Re\left\{a_{2}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\}$.
Let $a_{1}(t)=e^{-\mathrm{j} 2 \pi\left(f_{c}-f_{1}\right) t}$ and $a_{2}(t)=e^{-\mathrm{j} 2 \pi\left(f_{c}+f_{1}\right) t}$. Then $a_{1}(t) \neq a_{2}(t)$ and

$$
\sqrt{2} \Re\left\{a_{1}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\}=\sqrt{2} \Re\left\{a_{2}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\} .
$$

(b) Let $b(t)=a(t) e^{\mathrm{j} 2 \pi f_{c} t}$, which represents a translation of $a(t)$ in the frequency domain. If $a_{\mathcal{F}}(f)=0$ for $f<-f_{c}$, then $b_{\mathcal{F}}(f)=0$ for $f<0$. Because $\Re\{b(t)\}=$ $\frac{1}{2}\left(a(t) e^{\mathrm{j} 2 \pi f_{c} t}+a^{*}(t) e^{-\mathrm{j} 2 \pi f_{c} t}\right)$, taking the real part has a scaling effect and adds a negative-frequency component. The negative spectrum is canceled by the $h_{>}$filter, and the scaling is compensated by the $\sqrt{2}$ factors from the up-converter and downconverter. Multiplying by $e^{-\mathrm{j} 2 \pi f_{c} t}$ translates the spectrum back to the initial position. In conclusion, we obtain $a(t)$.
(c) Take any baseband signal $u(t)$ with frequency domain support $\left[-f_{c}-\Delta, f_{c}+\Delta\right], \Delta>0$. The signal can be real-valued or complex-valued (for example $u_{\mathcal{F}}(f)=\mathbb{1}_{\left[-f_{c}-\Delta, f_{c}+\Delta\right]}(f)$, which is a sinc in time domain). After we up-convert, the support of $u_{\mathcal{F}}(f)$ will not extend beyond $2 f_{c}+\Delta$. When we chop the negative frequencies we obtain a support contained in $\left[0,2 f_{c}+\Delta\right]$ and when we shift back to the left the support will be contained in $\left[-f_{c}, f_{c}+\Delta\right]$, which is too small to be the support of $u_{\mathcal{F}}(f)$.
(d) In time domain:

$$
\begin{aligned}
w(t) & =\sqrt{2} \Re\left\{a(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\} \\
& a \in \mathbb{R} \\
= & \sqrt{2} a(t) \cos \left(2 \pi f_{c} t\right) .
\end{aligned}
$$

Therefore,

$$
a(t)=\frac{w(t)}{\sqrt{2} \cos \left(2 \pi f_{c} t\right)} .
$$

In frequency domain: If $a_{\mathcal{F}}(f)=0$ for $f<-f_{c}$, we obtain $a(t)$ as described in (b). In the following, we consider the case $a_{\mathcal{F}}(f) \neq 0$ for $f<-f_{c}$.
We have $w_{\mathcal{F}}(f)=\frac{1}{\sqrt{2}}\left[a_{\mathcal{F}}\left(f-f_{c}\right)+a_{\mathcal{F}}\left(f+f_{c}\right)\right]=a_{\mathcal{F}}^{+}(f)+a_{\mathcal{F}}^{-}(f)$, with $a_{\mathcal{F}}^{+}(f)=\frac{1}{\sqrt{2}} a_{\mathcal{F}}(f-$ f_{c}) and $a_{\mathcal{F}}^{-}(f)=\frac{1}{\sqrt{2}} a_{\mathcal{F}}\left(f+f_{c}\right)$, respectively. These two components have overlapping support in some interval centered at 0 . However, there is no overlap for sufficiently large frequencies. This means that for sufficiently large frequencies f we have $w_{\mathcal{F}}(f)=\frac{1}{\sqrt{2}} a_{\mathcal{F}}^{+}(f)$, which implies that from $w_{\mathcal{F}}(f)$ we can observe the right tail of $a_{\mathcal{F}}^{+}(f)$ and use that information to remove the right tail of $a_{\mathcal{F}}^{-}(f)$ from $w_{\mathcal{F}}(f)$ (the right tails of $a_{\mathcal{F}}^{+}(f)$ and $a_{\mathcal{F}}^{-}(f)$ are the same because $a(t)$ is real). Hence, from $w_{\mathcal{F}}(f)$ we can read more of the right tail of $a_{\mathcal{F}}^{+}(f)$. The procedure can be repeated until we get to see $a_{\mathcal{F}}^{+}(f)$ for all frequencies above f_{c}. At this point, using $a_{\mathcal{F}}(f)=a_{\mathcal{F}}^{+}\left(f+f_{c}\right) \sqrt{2}$ and the fact that $a(t)$ is real-valued, we have $a_{\mathcal{F}}(f)$ for the positive frequencies, hence for all frequencies.

Solution 4.

$$
\begin{aligned}
x(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right) & =x(t)\left[\frac{e^{\mathrm{j} 2 \pi f_{c} t}+e^{-\mathrm{j} 2 \pi f_{c} t}}{\sqrt{2}}\right] \\
& =\sqrt{2} \Re\left\{x_{E}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\}\left[\frac{e^{\mathrm{j} 2 \pi f_{c} t}+e^{-\mathrm{j} 2 \pi f_{c} t}}{\sqrt{2}}\right] \\
& =\left[\frac{x_{E}(t) e^{\mathrm{j} 2 \pi f_{c} t}+x_{E}^{*}(t) e^{-\mathrm{j} 2 \pi f_{c} t}}{\sqrt{2}}\right]\left[\frac{e^{\mathrm{j} 2 \pi f_{c} t}+e^{-\mathrm{j} 2 \pi f_{c} t}}{\sqrt{2}}\right] \\
& =\frac{x_{E}(t) e^{\mathrm{j} 4 \pi f_{c} t}+x_{E}(t)+x_{E}^{*}(t)+x_{E}^{*}(t) e^{-\mathrm{j} 4 \pi f_{c} t}}{2} .
\end{aligned}
$$

At the lowpass filter output we have

$$
\frac{x_{E}(t)+x_{E}^{*}(t)}{2}=\Re\left\{x_{E}(t)\right\} .
$$

The calculation for the other path is similar.

Solution 5.

(a) Notice that the sinusoids of $w(t)$ have a period of $T_{c}=4 \mathrm{~ms}$ units of time, which implies that $f_{c}=\frac{1}{T_{c}}=\frac{1}{4 \mathrm{~ms}}=250 \mathrm{~Hz}$.
(b) Notice that the phase of the sinusoidal signal changes every $T_{s}=4 \mathrm{~ms}$. (Here we have $T_{s}=T_{c}$, but in general it is not the case. In practice we usually have $T_{s} \gg T_{c}$. See the note at the end.)
The expression of $w(t)$ as a function of t is:

$$
\begin{aligned}
w(t) & =\left\{\begin{array}{ll}
4 \cos \left(2 \pi f_{c} t-\frac{\pi}{2}\right) & t \in] 0, T_{s}[\\
4 \cos \left(2 \pi f_{c} t\right) & t \in] T_{s}, 2 T_{s}[\\
4 \cos \left(2 \pi f_{c} t+\pi\right) & t \in] 2 T_{s}, 3 T_{s}[\\
4 \cos \left(2 \pi f_{c} t+\frac{\pi}{2}\right) & t \in] 3 T_{s}, 4 T_{s}[
\end{array}=\left\{\begin{array}{ll}
\Re\left\{4 e^{\mathrm{j}\left(2 \pi f_{c} t-\frac{\pi}{2}\right)}\right\} & t \in] 0, T_{s}[\\
\Re\left\{4 e^{\mathrm{j}\left(2 \pi f_{c} t\right)}\right\} & t \in] T_{s}, 2 T_{s}[\\
\Re\left\{4 e^{\mathrm{j}\left(2 \pi f_{c} t+\pi\right)}\right\} & t \in] 2 T_{s}, 3 T_{s}[\\
\Re\left\{4 e^{\mathrm{j}\left(2 \pi f_{c} t+\frac{\pi}{2}\right)}\right\} & t \in] 3 T_{s}, 4 T_{s}[\\
& = \begin{cases}\Re\left\{-4 \mathrm{j} e^{\mathrm{j} 2 \pi f_{c} t}\right\} & t \in] 0, T_{s}[\\
\Re\left\{4 e^{\mathrm{j} 2 \pi f_{c} t}\right\} & t \in] T_{s}, 2 T_{s}[\\
\Re\left\{-4 e^{\mathrm{j} 2 \pi f_{c} t}\right\} & t \in] 2 T_{s}, 3 T_{s}[\\
\Re\left\{4 \mathrm{j} e^{\mathrm{j} 2 \pi f_{c} t}\right\} & t \in] 3 T_{s}, 4 T_{s}[\end{cases}
\end{array} . \begin{array}{l}
2\left\{w_{E}(t) e^{\mathrm{j} 2 \pi f_{c} t}\right\},
\end{array}\right.\right.
\end{aligned}
$$

where

$$
\begin{aligned}
w_{E}(t)= & -\frac{4 \mathrm{j}}{\sqrt{2}} \mathbb{1}\{t \in] 0, T_{s}[\}+\frac{4}{\sqrt{2}} \mathbb{1}\{t \in] T_{s}, 2 T_{s}[\} \\
& -\frac{4}{\sqrt{2}} \mathbb{1}\{t \in] 2 T_{s}, 3 T_{s}[\}+\frac{4 \mathrm{j}}{\sqrt{2}} \mathbb{1}\{t \in] 3 T_{s}, 4 T_{s}[\} \\
= & -\mathrm{j} \sqrt{8 T_{s}} \frac{1}{\sqrt{T_{s}}} \mathbb{1}\{t \in] 0, T_{s}[\}+\sqrt{8 T_{s}} \frac{1}{\sqrt{T_{s}}} \mathbb{1}\{t \in] T_{s}, 2 T_{s}[\} \\
& -\sqrt{8 T_{s}} \frac{1}{\sqrt{T_{s}}} \mathbb{1}\{t \in] 2 T_{s}, 3 T_{s}[\}+\mathrm{j} \sqrt{8 T_{s}} \frac{1}{\sqrt{T_{s}}} \mathbb{1}\{t \in] 3 T_{s}, 4 T_{s}[\} .
\end{aligned}
$$

If we define $\psi(t)=\frac{1}{\sqrt{T_{s}}} \mathbb{1}\{t \in] 0, T_{s}[\}, c_{0}=-\mathrm{j} \sqrt{8 T_{s}}, c_{1}=\sqrt{8 T_{s}}, c_{2}=-\sqrt{8 T_{s}}$ and $c_{3}=\mathrm{j} \sqrt{8 T_{s}}$, we get

$$
\begin{equation*}
w_{E}(t)=\sum_{i=0}^{3} c_{i} \psi\left(t-i T_{s}\right) \tag{1}
\end{equation*}
$$

Therefore, the pulse used in the waveform former is $\psi(t)=\frac{1}{\sqrt{T_{s}}} \mathbb{1}\{t \in] 0, T_{s}[\}$, and the waveform former output signal is given by (1). The orthonormal basis that is used is $\left\{\psi\left(t-i T_{s}\right)\right\}_{i=0}^{3}$.
(c) The symbol sequence is $\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}=\left\{-\mathrm{j} \sqrt{\mathcal{E}_{s}}, \sqrt{\mathcal{E}_{s}},-\sqrt{\mathcal{E}_{s}}, \mathrm{j} \sqrt{\mathcal{E}_{s}}\right\}$, where $\mathcal{E}_{s}=$ $8 T_{s}$. We can see that the symbol alphabet is $\left\{\sqrt{\mathcal{E}_{s}}, \mathrm{j} \sqrt{\mathcal{E}_{s}},-\sqrt{\mathcal{E}_{s}},-\mathrm{j} \sqrt{\mathcal{E}_{s}}\right\}$.
(d) We have:

- The output sequence of the encoder is the symbol sequence, which is

$$
\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}=\left\{-j \sqrt{\mathcal{E}_{s}}, \sqrt{\mathcal{E}_{s}},-\sqrt{\mathcal{E}_{s}}, \mathrm{j} \sqrt{\mathcal{E}_{s}}\right\} .
$$

- The symbol alphabet contains 4 symbols. This means that each symbol represents two bits. Since the symbol rate is $f_{s}=\frac{1}{T_{s}}=250$ symbols/s, the bit rate is $2 \times 250=500$ bits $/ \mathrm{s}$.
- The input/output mapping can be obtained by assigning two bits for each symbol in the symbol alphabet. Keeping in mind that it is better to minimize the number of bit-differences between close symbols, we obtain the following input/output mapping (which is not unique, i.e., we can obtain other mappings that satisfy the mentioned criterion): $\sqrt{\mathcal{E}_{s}} \longleftrightarrow 00, \mathrm{j} \sqrt{\mathcal{E}_{s}} \longleftrightarrow 01,-\sqrt{\mathcal{E}_{s}} \longleftrightarrow 11$ and $-\mathrm{j} \sqrt{\mathcal{E}_{s}} \longleftrightarrow$ 10.
- Assuming that the above input/output mapping was used, we can obtain the input sequence of the encoder: 10001101.

Note that in this example, we have $T_{s}=T_{c}$, so $f_{c}=f_{s}$. This is very unusual. In practice we almost always have $f_{c} \gg f_{s}$, especially if we are using electromagnetic waves.

