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Solution 1.

(a) Let l(y) be the number of 0’s in the sequence y.

PY |H(y|0) =
1

22k

PY |H(y|1) =

{
1

(2kk )
, if l = k

0, otherwise

(b) The ML decision rule is:

PY |H(y|1)
Ĥ=1

⋛
Ĥ=0

PY |H(y|0)

Because 1

(2kk )
> 1

22k
for any value of k, the ML decision rule becomes

Ĥ =

{
0, if l(y) ̸= k

1, if l(y) = k.

The single number needed is l(y), the number of 0’s in the sequence y.

(c) The decision rule that minimizes the error probability is the MAP rule:

PY |H(y|1)PH(1)
Ĥ=1

⋛
Ĥ=0

PY |H(y|0)PH(0).

The MAP decision rule gives Ĥ = 0 whenever l(y) ̸= k. When l(y) = k:

Ĥ =

{
0, if

(2kk )
22k

≥ PH(1)
PH(0)

1, otherwise.

(d) Trivial solution: If PH(1) = 1 then Ĥ = 1 for all y (In this case, l(y) = k is guaranteed).
Similarly, if PH(0) = 1 then Ĥ = 0 for all y.

Now assume PH(1) ̸= 1. Then there is a nonzero probability that l(y) ̸= k, in which
case Ĥ = 0. The MAP decision rule always chooses Ĥ = 0 if(

2k
k

)
22k

≥ PH(1)

PH(0)
⇐⇒ PH(0) ≥

1

(2kk )
1

(2kk )
+ 1

22k

.



Solution 2.

(a) A and B must be chosen such that the suggested functions become valid probability

density functions, i.e.
∫ 1

0
fY |H(y|i)dy = 1 for i = 0, 1. This yields A = 4/3 and B = 6/7.

(A quicker way is to draw the functions and find the area by looking at the drawings.)

(b) Let us first find the marginal of Y , i.e.

fY (y) = fY |H(y|0)PH(0) + fY |H(y|1)PH(1) = C −Dy,

where we find C = 23/21 and D = 4/21. Then, applying Bayes’ rule gives

PH|Y (0|y) =
fY |H(y|0)PH(0)

fY (y)
=

1

2

A− A
2
y

C −Dy
=

1

2

4/3− 2/3y

23/21− 4/21y
,

and similarly

PH|Y (1|y) =
fY |H(y|1)PH(1)

fY (y)
=

1

2

B + B
3
y

C −Dy
=

1

2

6/7 + 2/7y

23/21− 4/21y
.

(c) The threshold is where the two a posteriori probabilities are equal,

1

2

4/3− 2/3y

23/21− 4/21y
=

1

2

6/7 + 2/7y

23/21− 4/21y
,

or equivalently,

4/3− 2/3y = 6/7 + 2/7y.

The y that satisfies this equation is our threshold θ, thus θ = 0.5.

y

PH|Y (i|y)

0 0.5 1

0.5

i = 1i = 0

(d) The probability that we decide Ĥγ(y) = 1 when in reality H = 0 is just the probability
that y is larger than the threshold given that H = 0, which is

Pr {Y > γ|H = 0} =

∫ 1

γ

fY |H(y|0)dy =

∫ 1

γ

(
A− A

2
y

)
dy

= A(1− γ)− A

2

1− γ2

2

=
4(1− γ)

3
− 1− γ2

3
.
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(e) By analogy to the previous question,

Pr {Y < γ|H = 1} =

∫ γ

0

fY |H(y|1)dy =

∫ γ

0

(
B +

B

3
y

)
dy

= Bγ +
B

3

γ2

2

=
6γ

7
+

γ2

7
.

Pe(γ) = Pr {Y > γ|H = 0}PH(0) + Pr {Y < γ|H = 1}PH(1)

=
1

2

(
4(1− γ)

3
− 1− γ2

3
+

6γ

7
+

γ2

7

)
.

For γ = θ = 0.5, we find Pe(θ) = 0.44.

(f) To minimize Pe over γ, we take the derivative of Pe with respect to γ, i.e.,

d

dγ
Pe(γ) =

1

2

(
−4

3
+

2γ

3
+

6

7
+

2γ

7

)
.

Setting this equal to zero, we find γ = 0.5. We observe that the value of γ which
minimizes Pe(γ) is equal to θ. This was expected, because the MAP decision rule
minimizes the error probability.

Solution 3. (a) Using the derivative of geometrical series we get

E[X] =
∑
n≥1

n
2

3n
=

2

3

∑
n≥1

n

(
1

3

)n−1

=
3

2
.

(b)

E[Y |X = n] =
n

2
+

n+ 1

2
= n+

1

2
,

so

E[Y |X] = X +
1

2
,

implying

E[Y ] = E[E[Y |X]] =
3

2
+

1

2
= 2.

(c) • P (X = n, Y = m) = 0 if m ̸= n or m ̸= n+ 1

• P (X = n, Y = n) = P (Y = n|X = n)P (X = n) = 1
2

2
3n

= 1
3n

• P (X = n, Y = n+ 1) = P (Y = n+ 1|X = n)P (X = n) = 1
3n

(d) Let us treat the two cases

(n = 1) : P (Y = 1) = P (Y = 1, X = 1) = 1
3

(n ≥ 2) :

P (Y = n) =
∑
m≥1

P (X = m,Y = n)

= P (X = n, Y = n) + P (X = n− 1, Y = n)

=
1

3n
+

1

3n−1
=

4

3n
.
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(e) Again we treat two cases

(i = 1) : E[X|Y = 1] = 1

(i > 1) :

E[X|Y = i] =
∑
k≥1

kP (X = k|Y = i)

= iP (X = i|Y = i) + (i− 1)P (X = i− 1|Y = i)

=
4i− 3

4
.

So that E[X|Y ] = 4Y−3
4

1Y >1 + 1Y=1.

(f) Cov[X, Y ] = E[XY ]− E[X]E[Y ] = E[XY ]− 3 and

E[XY ] = E[E[XY |X]] = E[XE[Y |X]]

= E[X(X +
1

2
)] = E[X2] +

1

2
E[X]

We need to compute E[X2]

E[X2] =
∑
n≥1

n2 2

3n
= 2

∑
n≥1

(n(n− 1) + n)

(
1

3

)n

=
3

2
+

2

9

∞∑
n=2

n(n− 1)

(
1

3

)n−2

=
3

2
+

3

2
= 3,

which implies Cov[X, Y ] = 3
4
.

Solution 4.

Remark. Independent and identically distributed (i.i.d.) means that all Y1, . . . , Yk have
the same probability mass function and are independent of each other. First-order Markov
means that Y1, . . . , Yk depend on each other in a particular way: the probability mass
function Yi depends on the value of Yi−1, but given the value of Yi−1, it is independent of
Y1, . . . , Yi−2. Thus, in this problem, we observe a binary sequence, and we want to know
whether it has been generated by an i.i.d. source or by a first-order Markov source.

(a) Since the two hypotheses are equally likely, we find

PY |H(y|1)
PY |H(y|0)

Ĥ=1

⋛
Ĥ=0

PH(0)

PH(1)
= 1.

Plugging in, we obtain

1/2 · (1/4)l · (3/4)k−l−1

(1/2)k

Ĥ=1

⋛
Ĥ=0

1,

where l is the number of times the observed sequence changes either from zero to one
or from one to zero, i.e. the number of transitions in the observed sequence.

(b) The sufficient statistic here is simply the number of transitions l; this entirely specifies
the likelihood ratio.
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(c) In this case, the number of non-transitions is (k − l) = s, and the log-likelihood ratio
becomes

log
1/2 · (1/4)k−s · (3/4)s−1

(1/2)k
= log

(1/4)k−s · (3/4)s−1

(1/2)k−1

= (k − s) log(1/4) + (s− 1) log(3/4)− (k − 1) log(1/2)

= s log
3/4

1/4
+ k log

1/4

1/2
+ log

1/2

3/4

= s log 3 + k log 1/2 + log 2/3.

Thus, in terms of this log-likelihood ratio, the decision rule becomes

s log 3 + k log 1/2 + log 2/3
Ĥ=1

⋛
Ĥ=0

0.

That is, we have to find the smallest possible s such that this expression becomes larger
or equal to zero. Therefore,

s ≥
⌈
k log 1/2 + log 2/3

log 1/3

⌉
.

Solution 5. Since noise samples are i.i.d., the conditional probability distribution func-
tions under H0 and H1 will respectively be

fY |H(y|0) =
n∏

k=1

fZ(yk)

fY |H(y|1) =
n∏

k=1

fZ(yk − 2A)

where fZ(z) is the p.d.f. of Zk, k = 1, . . . , n. Furthermore, since the two hypotheses are
equi-probable, the MAP decision reduces to the ML decision rule.

(a) Plugging the density of Z the MAP decision rule becomes

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1(yk−2A)2

Ĥ=1

⋛
Ĥ=0

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1 y

2
k .

Simplifying the common factor 1
(2πσ2)n/2 and taking the logarithm we have

− 1

2σ2

n∑
k=1

(yk − 2A)2
Ĥ=1

⋛
Ĥ=0

− 1

2σ2

n∑
k=1

y2k.

Further simplifications reduce the MAP decision rule to

n∑
k=1

yk
Ĥ=1

⋛
Ĥ=0

nA ⇐⇒
n∑

k=1

(yk − A)
Ĥ=1

⋛
Ĥ=0

0.

Hence ϕa(x) = x.
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−A A

−A

A

x

ϕa(x)

(b) Similarly, the MAP decision rule is now

1

(2σ2)n/2
e−

√
2

σ

∑n
k=1 |yk−2A|

Ĥ=1

⋛
Ĥ=0

1

(2σ2)n/2
e−

√
2

σ

∑n
k=1 |yk|.

Simplifying common terms and taking the logarithm gives

−
√
2

σ

n∑
k=1

|yk − 2A|
Ĥ=1

⋛
Ĥ=0

−
√
2

σ

n∑
k=1

|yk|.

We can write the above in the desired form by noting that

|x| − |x− 2A| = 2ϕb(x− A)

where

ϕb(x) ≜


A if x ≥ A,

x if −A ≤ x ≤ A,

−A if x ≤ −A.

Thus the MAP decision rule will be

n∑
k=1

ϕb(yk − A)
Ĥ=1

⋛
Ĥ=0

0.

−A A

−A

A

x

ϕb(x)

Here we plot two noise distributions for σ = 1 (it is convenient to use logarithmic axis):
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The Laplacian distribution has larger tails: it puts more mass on zs with very large absolute
value. Because of this, for the decision in part (b) the optimal choice is to first “clip” the
input data yk, k = 1, . . . , n so that these high values do not influence the decision.

Solution 6. The MAP decision rule is

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1(yk−A)2

Ĥ=1

⋛
Ĥ=0

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1(yk+A)2 .

Simplifying the common positive factor of 1
(2πσ2)n/2 and taking the logarithm we have

− 1

2σ2

n∑
k=1

(yk − A)2
Ĥ=1

⋛
Ĥ=0

− 1

2σ2

n∑
k=1

(yk + A)2,

which can further be simplified to
n∑

k=1

yk
Ĥ=1

⋛
Ĥ=0

0.

Note that unlike the previous problem, for implementing the decision rule the receiver does
not need to know the value of A.
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