ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. Random variables X and Y are correlated Gaussian variables:

$$
\binom{X}{Y} \sim \mathcal{N}_{2}\left(\binom{0}{0}: K=\left[\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right]\right) .
$$

Find $I(X ; Y)$.
Problem 2. Consider an additive noise channel with input $x \in \mathbb{R}$, and output

$$
Y=x+Z
$$

where Z is a real random variable independent of the input x, has zero mean and variance equal to σ^{2}.

In this problem we prove in a different way from the lecture that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance. Let $\mathcal{N}_{\sigma^{2}}$ denote the Gaussian density with zero mean and variance σ^{2}.
(a) Denote the input probability density by p_{X}. Verify that

$$
I(X ; Y)=\iint p_{X}(x) p_{Z}(y-x) \ln \frac{p_{Z}(y-x)}{p_{Y}(y)} d x d y \quad \text { nats. }
$$

where p_{Y} is the density of the output when the input has density p_{X}.
(b) Now set $p_{X}=\mathcal{N}_{P}$. Verify that

$$
\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)=\iint p_{X}(x) p_{Z}(y-x) \ln \frac{\mathcal{N}_{\sigma^{2}}(y-x)}{\mathcal{N}_{P+\sigma^{2}}(y)} d x d y
$$

(c) Still with $p_{X}=\mathcal{N}_{P}$, show that

$$
\frac{1}{2} \ln \left(1+P / \sigma^{2}\right)-I(X ; Y) \leq 0
$$

[Hint: use (a) and (b) and $\ln t \leq t-1$.]
(d) Show that an additive noise channel with noise variance σ^{2} and input power P has capacity at least $\frac{1}{2} \log _{2}\left(1+P / \sigma^{2}\right)$ bits per channel use. Conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.

Problem 3. A discrete memoryless channel has three input symbols: $\{-1,0,1\}$, and two output symbols: $\{1,-1\}$. The transition probabilities are

$$
p(-1 \mid-1)=p(1 \mid 1)=1, \quad p(1 \mid 0)=p(-1 \mid 0)=0.5
$$

Find the capacity of this channel with cost constraint β, if the cost function is $b(x)=x^{2}$.

Problem 4. Consider a vector Gaussian channel described as follows:

$$
\begin{aligned}
& Y_{1}=x+Z_{1} \\
& Y_{2}=Z_{2}
\end{aligned}
$$

where x is the input to the channel constrained in power to $P ; Z_{1}$ and Z_{2} are jointly Gaussian random variables with $E\left[Z_{1}\right]=E\left[Z_{2}\right]=0, E\left[Z_{1}^{2}\right]=E\left[Z_{2}^{2}\right]=\sigma^{2}$ and $E\left[Z_{1} Z_{2}\right]=$ $\rho \sigma^{2}$, with $\rho \in[-1,1]$, and independent of the channel input.
(a) Consider a receiver that discards Y_{2} and decodes the message based only on Y_{1}. What rates are achievable with such a receiver?
(b) Consider a receiver that forms $Y=Y_{1}-\rho Y_{2}$, and decodes the message based only on Y. What rates are achievable with such a receiver?
(c) Find the capacity of the channel and compare it to the part (b).

Problem 5. Suppose $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ is an $n+m$ dimensional Gaussian random vector with covariance matrix K. Partition the $(n+m) \times(n+m)$ matrix K as

$$
K=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]
$$

where K_{11} is $n \times n$ and K_{22} is $m \times m$.
(a) Express $h\left(X_{1}, \ldots, X_{n}\right), h\left(Y_{1}, \ldots, Y_{n}\right)$ and $h\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ in terms of the matrices above.
(b) Show if the matrix $A=\left[\begin{array}{lll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ is positive definite, then $\operatorname{det}(A) \leq \operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}\right)$. [Hint: for any positive definite matrix $A, f(x)=\operatorname{det}(2 \pi A)^{-1 / 2} \exp \left(-\frac{1}{2} x^{T} A^{-1} x\right)$ is a probability density.]

