Problem 1. Show that a cascade of n identical binary symmetric channels,

$$X_0 \xrightarrow{\text{BSC #1}} X_1 \rightarrow \cdots \rightarrow X_{n-1} \xrightarrow{\text{BSC #n}} X_n$$

each with raw error probability p, is equivalent to a single BSC with error probability \(\frac{1}{2} \left(1 - (1 - 2p)^n\right) \) and hence that \(\lim_{n \to \infty} I(X_0; X_n) = 0 \) if $p \neq 0, 1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 2. Consider a memoryless channel with transition probability matrix $P_{Y|X}(y|x)$, with $x \in X$ and $y \in Y$. For a distribution Q over X, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q' over X,

(a) $I(Q') \leq \sum_{x \in X} Q'(x) \sum_{y \in Y} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in X} P_{Y|X}(y|x')Q(x')} \right)$

(b) $C \leq \max_x \sum_{y \in Y} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in X} P_{Y|X}(y|x')Q(x')} \right)$

where C is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

Problem 3.

(a) Show that $I(U; V) \geq I(U; V|T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution $p(y|x)$, and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on X.

For $k \in \{1, 2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(x)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1, 2\}$, with

$$\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.$$

Define

$$p_{W,X,Y}(w, x, y) = \begin{cases} \lambda p_1(x)p(y|x) & \text{if } w = 1 \\ (1 - \lambda)p_2(x)p(y|x) & \text{if } w = 2. \end{cases}$$

(b) Express $I(X; Y|W)$ in terms of I_1, I_2 and λ.

(c) Express $p(x)$ in terms of $p_1(x)$, $p_2(x)$ and λ.

(d) Using (a), (b) and (c) show that, for every fixed conditional distribution \(p_{Y|X} \), the mutual information \(I(X;Y) \) is a concave \(\cap \) function of \(p_X \).

Problem 4. Suppose \(Z \) is uniformly distributed on \([-1,1]\), and \(X \) is a random variable, independent of \(Z \), constrained to take values in \([-1,1]\). What distribution for \(X \) maximizes the entropy of \(X+Z \)? What distribution of \(X \) maximizes the entropy of \(XZ \)?

Problem 5. Let \(P_1 \) and \(P_2 \) be two channels of input alphabet \(\mathcal{X}_1 \) and \(\mathcal{X}_2 \) and of output alphabet \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \) respectively. Consider a communication scheme where the transmitter chooses the channel (\(P_1 \) or \(P_2 \)) to be used and where the receiver knows which channel were used. This scheme can be formalized by the channel \(P \) of input alphabet \(\mathcal{X} = (\mathcal{X}_1 \times \{1\}) \cup (\mathcal{X}_2 \times \{2\}) \) and of output alphabet \(\mathcal{Y} = (\mathcal{Y}_1 \times \{1\}) \cup (\mathcal{Y}_2 \times \{2\}) \), which is defined as follows:

\[
P(y,k'|x,k) = \begin{cases}
P_{k}(y|x) & \text{if } k' = k, \\ 0 & \text{otherwise.} \end{cases}
\]

Let \(X = (X_k, K) \) be a random variable in \(\mathcal{X} \) which will be the input distribution to the channel \(P \), and let \(Y = (Y_k, K) \in \mathcal{Y} \) be the output distribution. Define \(X_1 \) as being the random variable in \(\mathcal{X}_1 \) obtained by conditioning \(X_k \) on \(K = 1 \). Similarly define \(X_2, Y_1 \) and \(Y_2 \). Let \(\alpha \) be the probability that \(K = 1 \).

(a) Show that \(I(X;Y) = h_2(\alpha) + \alpha I(X_1;Y_1) + (1 - \alpha)I(X_2;Y_2). \)

(b) What is the input distribution \(X \) that achieves the capacity of \(P \)?

(c) Show that the capacity \(C \) of \(P \) satisfies \(2^C = 2^{C_1} + 2^{C_2} \), where \(C_1 \) and \(C_2 \) are the capacities of \(P_1 \) and \(P_2 \) respectively.

Problem 6. Suppose \(X \) and \(Y \) are independent geometric random variables. That is, \(p_X(k) = (1 - p)^{k-1}p \) and \(p_Y(k) = (1 - q)^{k-1}q, \ \forall k \in \{1,2,\ldots\}. \)

(a) Find \(H(X,Y) \).

(b) Find \(H(2X+Y, X-2Y) \)

Now consider two independent exponential random variables \(X \) and \(Y \). That is, \(p_X(t) = \lambda_X e^{-\lambda_X t} \) and \(p_Y(t) = \lambda_Y e^{-\lambda_Y t}, \ \forall t \in [0,\infty) \).

(c) Find \(h(X,Y) \).

(d) Find \(h(2X+Y, X-2Y) \)