PROBLEM 1. A source produces independent, equally probable symbols from an alphabet \((a_1, a_2)\) at a rate of one symbol every 3 seconds. These symbols are transmitted over a binary symmetric channel which is used once each second by encoding the source symbol \(a_1\) as 000 and the source symbol \(a_2\) as 111. If in the corresponding 3 second interval of the channel output, any of the sequences 000,001,010,100 is received, \(a_1\) is decoded; otherwise, \(a_2\) is decoded. Let \(\epsilon < 1/2\) be the channel crossover probability.

(a) For each possible received 3-bit sequence in the interval corresponding to a given source letter, find the probability that \(a_1\) came out of the source given that received sequence.

(b) Using part (a), show that the above decoding rule minimizes the probability of an incorrect decision.

(c) Find the probability of an incorrect decision (using part (a) is not the easy way here).

(d) If the source is slowed down to produce one letter every \(2^n + 1\) seconds, \(a_1\) being encoded by \(2^n + 1\) 0’s and \(a_2\) being encoded by \(2^n + 1\) 1’s. What decision rule minimizes the probability of error at the decoder? Find the probability of error as \(n \to \infty\).

PROBLEM 2. Consider two discrete memoryless channels. The first channel has input alphabet \(X\), output alphabet \(Y\); the second channel has input alphabet \(Y\) and output alphabet \(Z\). The first channel is described by the conditional probabilities \(P_1(y|x)\) and the second channel by \(P_2(z|y)\). Let the capacities of these channels be \(C_1\) and \(C_2\). Consider a third memoryless channel described by probabilities

\[
P_3(z|x) = \sum_{y \in Y} P_2(z|y)P_1(y|x), \quad x \in X, \ z \in Z.
\]

(a) Show that the capacity \(C_3\) of this third channel satisfies

\[
C_3 \leq \min\{C_1, C_2\}.
\]

(b) A helpful statistician preprocesses the output of the first channel by forming \(\tilde{Y} = g(Y)\). He claims that this will strictly improve the capacity.

(b1) Show that he is wrong.

(b2) Under what conditions does he not strictly decrease the capacity?

PROBLEM 3. Consider a random source \(S\) of information, and let \(W\) be a random variable which represents the first \(L\) symbols \(U_1, \ldots, U_L\) of this source, i.e., \(W = U_t^L\). We want to transmit the value of \(W\) using a memoryless stationary channel as follows:

- At time \(t = 1\), we send \(X_1 = f_1(W)\) through the channel.
• At time \(t = i + 1 \leq n \), we send \(X_{i+1} = f_i(W, Y^i) \) through the channel. \(Y_1, \ldots, Y_i \) are the output of the channel at times \(t = 1, \ldots, i \) respectively, \(f_1, \ldots, f_n \) are \(n \) mappings that constitute the encoder. Clearly, this is a communication system with feedback as we are using the value of \(Y^i \) in the computation of \(X_{i+1} \).

In the previous problem, we gave an example which satisfies \(I(X^n; Y^n) > nC \) and \(I(W; Y^n) \leq nC \). Show that the inequality \(I(W; Y^n) \leq nC \) always holds by justifying each of the following equalities and inequalities:

\[
I(W; Y^n) \overset{(a)}{=} \sum_{i=1}^{n} I(W; Y^i | Y^{i-1}) \overset{(b)}{=} \sum_{i=1}^{n} I(W; Y^i | Y^{i-1}, Y_i) \overset{(c)}{=} \sum_{i=1}^{n} I(W; X_i, X^{i-1}, Y^{i-1}; Y_i) \\
\overset{(d)}{=} \sum_{i=1}^{n} I(X_i, X^{i-1}, Y^{i-1}; Y_i) \overset{(e)}{=} \sum_{i=1}^{n} I(X_i; Y_i) \overset{(f)}{=} nC.
\]

Since \(I(W; Y^n) \) represents the amount of information that is shared with the receiver, the inequality \(I(W; Y^n) \leq nC \) shows that feedback does not increase the capacity.

Problem 4. *Channels with memory have higher capacity.* Consider a binary symmetric channel with \(Y_i = X_i \oplus Z_i \), where \(\oplus \) is mod 2 addition, and \(X_i, Y_i \in \{0, 1\} \).

Suppose that \(\{Z_i\} \) has constant marginal probabilities \(\Pr \{Z_i = 1\} = p = 1 - \Pr \{Z_i = 0\} \), but that \(Z_1, Z_2, \ldots, Z_n \) are not necessarily independent. Assume that \((Z_1, \ldots, Z_n) \) is independent of the input \((X_1, \ldots, X_n) \). Let \(C = \log 2 - H(p, 1 - p) \). Show that

\[
\max_{p_{X_1, X_2, \ldots, X_n}} I(X_1, X_2, \ldots, X_n; Y_1, Y_2, \ldots, Y_n) \geq nC.
\]

Problem 5. Consider two discrete memoryless channels. The input alphabet, output alphabet, transition probabilities and capacity of the \(k \)th channel is given by \(X_k, Y_k, p_k \) and \(C_k \) respectively \((k = 1, 2)\). The channels operate independently. A communication system has access to both channels, that is, the effective channel between the transmitter and receiver has input alphabet \(X_1 \times X_2 \), output alphabet \(Y_1 \times Y_2 \) and transition probabilities \(p_1(y_1|x_1)p_2(y_2|x_2) \). Find the capacity of this channel.

Problem 6. Consider the following symmetric channel with binary input that maps to a ternary output. (A channel that may either flip or erase the transmitted symbol.)

![Diagram](attachment:image.png)

In other words,

\[
p_i(y_i | 0) = \begin{cases}
1 - \alpha_i - \epsilon_i, & y_i = 0 \\
\epsilon_i, & y_i = e \\
\alpha_i, & y_i = 1
\end{cases} \quad \alpha_i, \epsilon_i \in [0, 1], \quad \alpha_i + \epsilon_i \leq 1
\]
and vice versa for $p_i(y_i|1)$. Also, Y_i‘s are independent of each other given X_i’s. (i.e. $p(y_i^n|x^n_i) = \prod_{i=1}^n p_i(y_i|x_i)$ for any $n \geq 1$).

(a) Suppose the channel is not time varying, that is $\alpha_i = \alpha$ and $\epsilon_i = \epsilon$. Find the capacity $C = \max_{p(x)} I(X;Y)$

(b) What are the special cases when $\alpha = 0$, $\epsilon \neq 0$ and $\alpha \neq 0$, $\epsilon = 0$? What happens when $\alpha + \epsilon = 1$?

(c) Now, suppose that the channel is time varying, that is, for each channel use α_i’s and ϵ_i’s differ. Find $\max_{p(x^n)} I(X^n_1;Y^n_1)$.
