ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 9
Information Theory and Coding
Solutions to Homework 4
Oct. 17, 2022

Problem 1.

(a) We have $H(f(U)) \leq H(f(U), U)=H(U)+H(f(U) \mid U)=H(U)+0=H(U)$.
(b) Notice that $U \ominus V \ominus f(V)$ is a Markov chain. The data processing inequality implies that $H(U)-H(U \mid f(V))=I(U ; f(V)) \leq I(U ; V)=H(U)-H(U \mid V)$. Therefore, $H(U \mid V) \leq H(U \mid f(V))$.

Problem 2.

(a) We have:

$$
\begin{aligned}
H(U \mid \hat{U}) & \leq H(U, W \mid \hat{U})=H(W \mid \hat{U})+H(U \mid \hat{U}, W) \leq H(W)+H(U \mid \hat{U}, W) \\
& =H(W)+H(U \mid \hat{U}, W=0) \cdot \mathbb{P}[W=0]+H(U \mid \hat{U}, W=1) \cdot \mathbb{P}[W=1] \\
& \stackrel{(*)}{\leq} h_{2}\left(p_{e}\right)+0 \cdot\left(1-p_{e}\right)+\log (|\mathcal{U}|-1) \cdot p_{e}=h_{2}\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)
\end{aligned}
$$

where (*) follows from the following facts:
$-H(W)=h_{2}\left(p_{e}\right)$.

- $H(U \mid \hat{U}, W=0)=0$: conditioned on $W=0$, we know that $U=\hat{U}$ and so the conditional entropy $H(U \mid \hat{U}, W=0)$ is equal to 0 .
- $H(U \mid \hat{U}, W=1) \leq \log (|\mathcal{U}|-1)$: conditioned on $W=1$, we know that $U \neq \hat{U}$ and so there are at most $|\mathcal{U}|-1$ values for U. Therefore, the conditional entropy $H(U \mid \hat{U}, W=0)$ is at $\operatorname{most} \log (|\mathcal{U}|-1)$.
(b) Let $\hat{U}=f(V)$. We have $H(U \mid \hat{U}) \leq h_{2}\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)$ from (a). On the other hand, from Problem 1(b) we have $H(U \mid V) \leq H(U \mid f(V))=H(U \mid \hat{U})$. We conclude that $H(U \mid V) \leq h_{2}\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)$.

Problem 3.

(a) Since

$$
P(U=u, Z=z)= \begin{cases}p(u) & \text { if } z=1, \\ q(u) & \text { if } z=2\end{cases}
$$

one can immediately see that the distribution of U is $r(u)=\theta p(u)+(1-\theta) q(u)$.
(b) $H(U)=h(r)$, and

$$
H(U \mid Z)=\sum_{z} P(Z=z) H(U \mid Z=z)=\theta h(p)+(1-\theta) h(q) .
$$

The last equality follows since given $z=1$ (resp. $z=2$) U has distribution p (resp. q). Since $H(U) \geq H(U \mid Z)$, we have proved that $h(r) \geq \theta h(p)+(1-\theta) h(q)$.

Problem 4.

(a) We have:

$$
\begin{aligned}
S & =\sum_{u \in \mathcal{U}} \max \left\{P_{1}(u), P_{2}(u)\right\} \stackrel{(*)}{\leq} \sum_{u \in \mathcal{U}}\left(P_{1}(u)+P_{2}(u)\right) \\
& =\sum_{u \in \mathcal{U}} P_{1}(u)+\sum_{u \in \mathcal{U}} P_{2}(u)=1+1=2
\end{aligned}
$$

It is easy to see from $(*)$ that $S=2$ if and only if $\max \left\{P_{1}(u), P_{2}(u)\right\}=P_{1}(u)+P_{2}(u)$ for all $u \in \mathcal{U}$, which is equivalent to say that there is no $u \in \mathcal{U}$ for which we have $P_{1}(u)>0$ and $P_{2}(u)>0$. In other words, $S=2$ if and only if

$$
\left\{u \in \mathcal{U}: P_{1}(u)>0\right\} \cap\left\{u \in \mathcal{U}: P_{2}(u)>0\right\}=\varnothing .
$$

(b) Let $l_{i}=\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right\rceil$, and let us compute the Kraft sum:

$$
\sum_{i=1}^{M} 2^{-l_{i}} \leq \sum_{i=1}^{M} 2^{-\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}}=\sum_{i=1}^{M} \frac{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}{S}=1
$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}.
(c) Since the code constructed in (b) is prefix free, it must be the case that $\bar{l} \geq H(U)$. In order to prove the upper bounds, let P^{*} be the true distribution (which is either P_{1} or $\left.P_{2}\right)$. It is easy to see that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}$ for all $1 \leq i \leq M$. We have:

$$
\begin{aligned}
\bar{l} & =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot l_{i}=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right\rceil \\
& <\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right) \\
& =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log S+\log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right) \\
& =1+\log S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}} \\
& \stackrel{(*)}{\leq} 1+\log S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P^{*}\left(a_{i}\right)}=H(U)+\log S+1 \leq H(U)+2
\end{aligned}
$$

where the inequality $(*)$ uses the fact that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}$ for all $1 \leq$ $i \leq M$.
(d) Now let $l_{i}=\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right\rceil$, and let us compute the Kraft sum:

$$
\sum_{i=1}^{M} 2^{-l_{i}} \leq \sum_{i=1}^{M} 2^{-\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}}=\sum_{i=1}^{M} \frac{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}{S}=1
$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}. Since the code is prefix free, it must be the case that $\bar{l} \geq H(U)$. In order to prove the upper bounds, let P^{*} be the true distribution (which is either P_{1} or \ldots or $\left.P_{k}\right)$. It is easy to see that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}$ for all $1 \leq i \leq M$. We have:

$$
\begin{aligned}
\bar{l} & =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot l_{i}=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left[\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right] \\
& <\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right) \\
& =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} S+\log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right) \\
& =1+\log _{2} S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}} \\
& \stackrel{(*)}{\leq} 1+\log _{2} S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P^{*}\left(a_{i}\right)}=H(U)+\log _{2} S+1,
\end{aligned}
$$

where the inequality $(*)$ uses the fact that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}$ for all $1 \leq i \leq M$. Now notice that $\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\} \leq \sum_{j=1}^{k} P_{j}\left(a_{i}\right)$ for all $1 \leq i \leq M$. Therefore, we have

$$
S=\sum_{i=1}^{M} \max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\} \leq \sum_{i=1}^{M} \sum_{j=1}^{k} P_{j}\left(a_{i}\right)=\sum_{j=1}^{k} \sum_{i=1}^{M} P_{j}\left(a_{i}\right)=\sum_{j=1}^{k} 1=k .
$$

We conclude that $H(U) \leq \bar{l} \leq H(U)+\log S+1 \leq H(U)+\log k+1$.

Problem 5.

(a) We prove the identity by induction on $n \geq 1$. For $n=1$, the identity is trivial. Let $n>1$ and suppose that the identity is true up to $n-1$. We have:

$$
\begin{aligned}
I\left(Y_{1}^{n-1} ; X_{n}\right) & =I\left(Y_{1}^{n-2}, Y_{n-1} ; X_{n}\right) \stackrel{(*)}{=} I\left(Y_{1}^{n-2} ; X_{n}\right)+I\left(X_{n} ; Y_{n-1} \mid Y_{1}^{n-2}\right) \\
& \stackrel{(* *)}{=}\left(\sum_{i=1}^{n-2} I\left(X_{n} ; Y_{i} \mid Y_{1}^{i-1}\right)\right)+I\left(X_{n} ; Y_{n-1} \mid Y_{1}^{n-2}\right)=\sum_{i=1}^{n-1} I\left(X_{n} ; Y_{i} \mid Y_{1}^{i-1}\right)
\end{aligned}
$$

The identity $(*)$ is by the chain rule for mutual information, and the identity $\left({ }^{* *}\right)$ is by the induction hypothesis.
(b) For every $0 \leq i \leq n$, define $a_{i}=I\left(X_{i+1}^{n} ; Y_{1}^{i}\right)$, and for every $1 \leq i \leq n$, define $b_{i}=I\left(X_{i+1}^{n} ; Y_{1}^{i-1}\right)$. It is easy to see that $a_{0}=a_{n}=0$. We have:

$$
\begin{aligned}
& \sum_{i=1}^{n} I\left(X_{i+1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right) \stackrel{(*)}{=} \sum_{i=1}^{n}\left(I\left(X_{i+1}^{n} ; Y_{1}^{i}\right)-I\left(X_{i+1}^{n} ; Y_{1}^{i-1}\right)\right)=\left(\sum_{i=1}^{n} a_{i}\right)-\left(\sum_{i=1}^{n} b_{i}\right) \\
& \stackrel{(* *)}{=}\left(\sum_{i=0}^{n-1} a_{i}\right)-\left(\sum_{i=1}^{n} b_{i}\right)=\left(\sum_{i=1}^{n} a_{i-1}\right)-\left(\sum_{i=1}^{n} b_{i}\right)=\sum_{i=1}^{n}\left(a_{i-1}-b_{i}\right) \\
&=\sum_{i=1}^{n}\left(I\left(X_{i}^{n} ; Y_{1}^{i-1}\right)-I\left(X_{i+1}^{n} ; Y_{1}^{i-1}\right)\right) \stackrel{(* * *)}{=} \sum_{i=1}^{n} I\left(Y_{1}^{i-1} ; X_{i} \mid X_{i+1}^{n}\right) .
\end{aligned}
$$

The identities $(*)$ and $(* * *)$ are by the chain rule for mutual information. The identity $(* *)$ follows from the fact that $a_{0}=a_{n}=0$, which implies that $\sum_{i=1}^{n} a_{i}=\sum_{i=0}^{n-1} a_{i}$.

Problem 6.

(a) We can write the following chain of inequalities:

$$
\begin{align*}
Q^{n}(\mathbf{x}) & \stackrel{1}{=} \prod_{i=1}^{n} Q\left(x_{i}\right) \stackrel{2}{=} \prod_{a \in \mathcal{X}} Q(a)^{N(a \mid \mathbf{x})} \stackrel{3}{=} \prod_{a \in \mathcal{X}} Q(a)^{n P_{\mathbf{x}}(a)}=\prod_{a \in \mathcal{X}} 2^{n P_{\mathbf{x}}(a) \log Q(a)} \tag{1}\\
& =\prod_{a \in \mathcal{X}} 2^{n\left(P_{\mathbf{x}}(a) \log Q(a)-P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)} \tag{2}\\
& =2^{n \sum_{a \in \mathcal{X}}\left(-P_{\mathbf{x}}(a) \log \frac{P_{\mathbf{x}}(a)}{Q(a)}+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)}=2^{n\left(-D\left(P_{\mathbf{x}} \| Q\right)+H\left(P_{\mathbf{x}}\right)\right)}
\end{align*}
$$

where 1 follows because the sequence is i.i.d., grouping symbols gives 2 , and 3 is the definition of type.
(b) Upper bound: We know that

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1
$$

Consider one term and set $p=k / n$. Then,

$$
1 \geq\binom{ n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=\binom{n}{k} 2^{n\left(\frac{k}{n} \log \frac{k}{n}+\frac{n-k}{n} \log \frac{n-k}{n}\right)}=\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)}
$$

Lower bound: Define $S_{j}=\binom{n}{j} p^{j}(1-p)^{n-j}$. We can compute

$$
\frac{S_{j+1}}{S_{j}}=\frac{n-j}{j+1} \frac{p}{1-p}
$$

One can see that this ratio is a decreasing function in j. It equals 1 , if $j=n p+p-1$, so $\frac{S_{j+1}}{S_{j}}<1$ for $j=\lfloor n p+p\rfloor$ and $\frac{S_{j+1}}{S_{j}} \geq 1$ for any smaller j. Hence, S_{j} takes its maximum value at $j=\lfloor n p+p\rfloor$, which equals k in our case. From this we have that

$$
\begin{align*}
1 & =\sum_{j=0}^{n}\binom{n}{j} p^{j}(1-p)^{n-j} \leq(n+1) \max _{j}\binom{n}{j} p^{j}(1-p)^{j} \\
& \leq(n+1)\binom{n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=(n+1)\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)} . \tag{3}
\end{align*}
$$

The last equality comes from the derivation we had when proving the upper bound.
(c) Since for every $\mathbf{x} \in T(P), Q^{n}(\mathbf{x})=2^{-n(H(P)+D(P \| Q))}$ (by part (a)) and $\frac{1}{n+1} 2^{n H(P)} \leq$ $|T(P)| \leq 2^{n H(P)}$ (by part (b)), we have

$$
\frac{1}{n+1} 2^{-n D(P \| Q)} \leq Q^{n}(T(P)) \leq 2^{-n D(P \| Q)}
$$

