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PROBLEM 1.

(1) Let p = P(ar), thus Pas) = Plas) = Plas) =
tion (see figure below) we must have p > 2(1
ny = 1.

(1 —p)/3. By the Huffman construc-
—p)/3, i.e., ¢ = 2/5 in order to have
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(b) With P(a;) = g, the figure below illustrates that a Huffman code exists with n; > 1.

a, 0.4 o
ay 0.2
as 0.2 o
ay 0.2

(c) & (d) For K = 2, ny is always 1. For K = 3, n; = 1 is guaranteed by P(a;) > P(ag) >
P(a3). Now take K > 4 and assume P(ay) > 2/5 and P(a;) > P(az) > --- > P(ak).
The Huffman procedure will combine ax_1 and ax to obtain a super-symbol with
probability

Plax_1) + Plax) < 2 K‘O’f’l <25,

Thus, in the reduced ensemble a; is still the most likely element. Repeating the
argument until K = 3, we see that P(a;) > ¢ guarantees n; = 1 in all cases.

(e) For K < 3 no such ¢ exists. For K > 3, we claim ¢ = 1/3. Assume a; remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P(a;) < ¢ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a; will be combined
with one of them, leading to n; > 1.



PROBLEM 2.

(a) We already know that
H(XY),
H(YZ),
and

H(Z)+ H(X) > H(ZX).

Adding these inequalities together and diving by two gives

H(X) + H(Y) + H(Z) > % (H(XY) + HYZ) + H(ZX)].

(b) The difference between the left and right sides, i.e.,
H(XY)+ H(YZ) - HIXYZ) — H(Y),

equals
H(X|Y) - H(X|YZ) = I(X; Z|Y),
which is always positive.
(¢) Using (b) with (YZX) and (ZXY') in the role of (XY Z) gives the inequalities
H(YZ)+H(ZX)> H(XYZ) + H(Z)

and
H(ZX)+ H(XY)> H(XYZ)+ H(X).

Adding the inequality in (b) to these two gives

2[H(XY)+ HYZ)+ H(ZX)| >3H(XYZ)+ H(X)+ H(Y) + H(Z).

(d) Since H(X)+ H(Y)+ H(Z) > H(XYZ), (c) yields

2[H(XY) + H(YZ) + H(ZX)] > AH(XY Z).

(e) Let {(xz, Yiyzi) ti=1,... ,n} be the zyz-coordinates of the n points. Let X, Y and
Z be random variables with Pr((X,Y, Z) = (z;,v;,2)) = 1/n for every 1 <i < n.
Then, H(XY Z) = log,n. Furthermore, the random pair (XY) takes values in the
projection of the n points to the xy plane and similarly for (Y Z) and (ZX). Thus
H(XY) <logyng,, HYZ) <logyn,,, and H(ZX) <log,n,,. Part (d) now yields

108 [Mayny:n] > H(XY)+ H(YZ) + H(ZX) > 2H(XY Z) = 2logy n,

which implies that ng,n,.n., > n2.

The relationship between H(XY Z) and H(XY), H(YZ) and H(ZX) is a special case of
Han’s inequality, which, for a collection of n random variables relates the sum of the (Z)
joint entropies of k out of n random variables to the sum of the (kil) entropies of k + 1
out of n random variables.

The combinatorial fact about the projections of points in 3D is known as Shearer’s
lemma.



PROBLEM 3.
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Since Y is a random variable that takes M — 1 values H(Y') < log(M — 1) with equality if
and only if Y takes each of its possible values with equal probability.

PROBLEM 4.
(a) Using the chain rule for mutual information,
I(X,Y:2) = I(X: 2) + 1V Z | X) = I(X; 2),

with equality iff I(Y; Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,
H(X,Y | 2) = H(X | 2)+ H(Y | X,2) > H(X | 2),
with equality iff H(Y | X, Z) = 0, that is, when Y is a function of X and/or Z.

(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

HX,Y,Z)—H(X.Y)=H(Z | X,Y)=H(Z| X) - I(Y;Z| X)
<H(Z|X)=H(X,Z) - H(X),

with equality iff I(Y; Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,
I(X;Z|\V)+1(Z;)Y)=1X,Y;2)=1(Z;)Y | X))+ [(X;Z2),
and therefore
I(X;Z|\Y)=1Z;Y | X) - 1(Z;Y)+ 1(X; 7).
We see that this inequality is actually an equality in all cases.
PROBLEM 5. Let X* denote X7, ..., X;.
(a) By stationarity we have for all 1 <i <mn,
H(X,| X" < H(X,| X ig1, Xnoiga, -, Xpoa) = H(XG X,
which implies that,
Y H(X XY

H(X, X" 1) A 1)
< Dict H(;(ﬂXll) (2)
CH(X X X)) -



(b) By the chain rule for entropy,

H(Xy, X, ..., X,) _ Sor H(X| X

- " (4)
_H(X, X" + H(X X .. Xo1) ©

From stationarity it follows that for all 1 < i < n,
H(X,| X" < H(X| X',

which further implies, by summing both sides over i = 1,...,n — 1 and dividing by

n — 1, that,
n—1 i—1
T H(X|X?
H(Xn’anl) S 2121 ( {‘ ) (7)
n _—
B H(X1, X, ..., X5 1)

Combining (6) and (8) yields,

H(X, X5, , X 1 | H(X, Xo, ..., X~
(X3, Xz ) o L]HXL X Uy (X X X))
n n n—1
H(X17X27" aXn—l)
_ 10
p— (10)
PROBLEM 6. By the chain rule for entropy,
H(X0|X717 e ,X,n) — H(Xo,Xfl, P ,X,n) — H(X,l, e ,X,n) (11)
= H(Xo, X1,...,Xp) — H(Xy, ..., X,) (12)
= H<XO’X17"'7XH)7 (13)

where (12) follows from stationarity.
PROBLEM 7. X = Y - (Z,W) implies that I(X; Z, W|Y) = 0. Then,
IX;Y)+1(Z,W)=1(X;Y)+ (X5 ZWI)Y)+ 1(Z, W) =1(X;Y, Z,W)+ 1(Z; W)

Notice that I(X;Y) + I(X; Z,W|Y) = I[(X;Y, Z, W) follows from chain rule. Using the
chain rule for a couple of times, we obtain the following steps.

(XY, ZW)+ 1(Z; W) =1(X;2)+ I(X;Y,W|Z)+ I(Z; W) (
=I1(X;2)+ I[( X5 YW, Z2)+ I(X;WZ)+ 1(Z; W) (

— (X 2) + [(X;Y|W, Z) + [(X, Z; W) (16
> 1(X: Z) 4+ I(X; W) (

as [(X, Z;W) > I(X; W)



