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Problem 1.

(a) Let p = P (a1), thus P (a2) = P (a3) = P (a4) = (1− p)/3. By the Huffman construc-
tion (see figure below) we must have p > 2(1 − p)/3, i.e., q = 2/5 in order to have
n1 = 1.
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(b) With P (a1) = q, the figure below illustrates that a Huffman code exists with n1 > 1.
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(c) & (d) For K = 2, n1 is always 1. For K = 3, n1 = 1 is guaranteed by P (a1) > P (a2) ≥
P (a3). Now take K ≥ 4 and assume P (a1) > 2/5 and P (a1) > P (a2) ≥ · · · ≥ P (aK).
The Huffman procedure will combine aK−1 and aK to obtain a super-symbol with
probability

P (aK−1) + P (aK) < 2
3/5

K − 1
≤ 2/5.

Thus, in the reduced ensemble a1 is still the most likely element. Repeating the
argument until K = 3, we see that P (a1) > q guarantees n1 = 1 in all cases.

(e) For K < 3 no such q′ exists. For K ≥ 3, we claim q′ = 1/3. Assume a1 remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P (a1) < q′ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a1 will be combined
with one of them, leading to n1 > 1.



Problem 2.

(a) We already know that
H(X) +H(Y ) ≥ H(XY ),

H(Y ) +H(Z) ≥ H(Y Z),

and
H(Z) +H(X) ≥ H(ZX).

Adding these inequalities together and diving by two gives

H(X) +H(Y ) +H(Z) ≥ 1

2

[
H(XY ) +H(Y Z) +H(ZX)

]
.

(b) The difference between the left and right sides, i.e.,

H(XY ) +H(Y Z)−H(XY Z)−H(Y ),

equals
H(X|Y )−H(X|Y Z) = I(X;Z|Y ),

which is always positive.

(c) Using (b) with (Y ZX) and (ZXY ) in the role of (XY Z) gives the inequalities

H(Y Z) +H(ZX) ≥ H(XY Z) +H(Z)

and
H(ZX) +H(XY ) ≥ H(XY Z) +H(X).

Adding the inequality in (b) to these two gives

2
[
H(XY ) +H(Y Z) +H(ZX)

]
≥ 3H(XY Z) +H(X) +H(Y ) +H(Z).

(d) Since H(X) +H(Y ) +H(Z) ≥ H(XY Z), (c) yields

2
[
H(XY ) +H(Y Z) +H(ZX)

]
≥ 4H(XY Z).

(e) Let
{

(xi, yi, zi) : i = 1, . . . , n
}

be the xyz-coordinates of the n points. Let X, Y and
Z be random variables with Pr

(
(X, Y, Z) = (xi, yi, zi)

)
= 1/n for every 1 ≤ i ≤ n.

Then, H(XY Z) = log2 n. Furthermore, the random pair (XY ) takes values in the
projection of the n points to the xy plane and similarly for (Y Z) and (ZX). Thus
H(XY ) ≤ log2 nxy, H(Y Z) ≤ log2 nyz, and H(ZX) ≤ log2 nzx. Part (d) now yields

log2[nxynyznzx] ≥ H(XY ) +H(Y Z) +H(ZX) ≥ 2H(XY Z) = 2 log2 n,

which implies that nxynyznzx ≥ n2.

The relationship between H(XY Z) and H(XY ), H(Y Z) and H(ZX) is a special case of
Han’s inequality, which, for a collection of n random variables relates the sum of the

(
n
k

)
joint entropies of k out of n random variables to the sum of the

(
n

k+1

)
entropies of k + 1

out of n random variables.
The combinatorial fact about the projections of points in 3D is known as Shearer’s

lemma.
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Problem 3.

H(X) = −
M∑
k=1

PX(ak) logPX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α logα

= (1− α)H(Y )− (1− α) log(1− α)− α logα

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.

Problem 4.

(a) Using the chain rule for mutual information,

I(X, Y ;Z) = I(X;Z) + I(Y ;Z | X) ≥ I(X;Z),

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) +H(Y | X,Z) ≥ H(X | Z),

with equality iff H(Y | X,Z) = 0, that is, when Y is a function of X and/or Z.

(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ;Z | X)

≤ H(Z | X) = H(X,Z)−H(X) ,

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,

I(X;Z | Y ) + I(Z;Y ) = I(X, Y ;Z) = I(Z;Y | X) + I(X;Z) ,

and therefore
I(X;Z | Y ) = I(Z;Y | X)− I(Z;Y ) + I(X;Z) .

We see that this inequality is actually an equality in all cases.

Problem 5. Let X i denote X1, . . . , Xi.

(a) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xn|Xn−i+1, Xn−i+2, . . . , Xn−1) = H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n
i=1H(Xn|Xn−1)

n
(1)

≤
∑n

i=1H(Xi|X i−1)

n
(2)

=
H(X1, X2, . . . , Xn)

n
. (3)
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(b) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n
i=1H(Xi|X i−1)

n
(4)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(5)

=
H(Xn|Xn−1) +H(X1, X2, . . . , Xn−1)

n
. (6)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n− 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n− 1
(7)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (8)

Combining (6) and (8) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[
H(X1, X2, . . . , Xn−1)

n− 1
+H(X1, X2, . . . , Xn−1)

]
(9)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (10)

Problem 6. By the chain rule for entropy,

H(X0|X−1, . . . , X−n) = H(X0, X−1, . . . , X−n)−H(X−1, . . . , X−n) (11)

= H(X0, X1, . . . , Xn)−H(X1, . . . , Xn) (12)

= H(X0|X1, . . . , Xn), (13)

where (12) follows from stationarity.

Problem 7. X −−◦ Y −−◦ (Z,W ) implies that I(X;Z,W |Y ) = 0. Then,

I(X;Y ) + I(Z;W ) = I(X;Y ) + I(X;Z,W |Y ) + I(Z;W ) = I(X;Y, Z,W ) + I(Z;W )

Notice that I(X;Y ) + I(X;Z,W |Y ) = I(X;Y, Z,W ) follows from chain rule. Using the
chain rule for a couple of times, we obtain the following steps.

I(X;Y, Z,W ) + I(Z;W ) = I(X;Z) + I(X;Y,W |Z) + I(Z;W ) (14)

= I(X;Z) + I(X;Y |W,Z) + I(X;W |Z) + I(Z;W ) (15)

= I(X;Z) + I(X;Y |W,Z) + I(X,Z;W ) (16)

≥ I(X;Z) + I(X;W ) (17)

as I(X,Z;W ) ≥ I(X;W )
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