Problem 1. Assume \(\{X_n\}_{n=1}^{\infty} \) and \(\{Y_n\}_{n=1}^{\infty} \) are two i.i.d. processes (individually) with the same alphabet, with the same entropy rate \(H(X_0) = H(Y_0) = 1 \) and independent from each other. We construct two processes \(Z \) and \(W \) as follows:

- To construct the process \(Z \), we flip a fair coin and depending on the result \(\Theta \in \{0, 1\} \) we select one of the processes. In other words, \(Z_n = \Theta X_n + (1 - \Theta) Y_n \).

- To construct the process \(W \), we do the coin flip at every time \(n \). In other words, at every time \(n \) we flip a coin and depending on the result \(\Theta_n \in \{0, 1\} \) we select \(X_n \) or \(Y_n \) as follows \(W_n = \Theta_n X_n + (1 - \Theta_n) Y_n \).

(a) Are \(Z \) and \(W \) stationary processes? Are they i.i.d. processes?

(b) Find the entropy rate of \(Z \) and \(W \). How do they compare? When are they equal?

Recall that the entropy rate of the process \(U \) (if exists) is \(\lim_{n \to \infty} \frac{1}{n} H(U_1, \cdots, U_n) \).

Problem 2. We have shown in class that

\[
\binom{n}{k} \leq 2^{n h_2 \left(\frac{k}{n} \right)}.
\]

(a) Given \(n \in \mathbb{N}_+ \) and \(n_1, n_2, \ldots, n_K \in \mathbb{N} \) such that \(\sum_{i=1}^{n} n_i = n \), we define the quantity \(\binom{n}{n_1 n_2 \ldots n_K} = \frac{n!}{n_1! n_2! \ldots n_K!} \).

Show that

\[
\binom{n}{n_1 n_2 \ldots n_K} \leq 2^{n h(p_1, \ldots, p_K)},
\]

where \(p_i = \frac{n_i}{n} \) and \(h(p_1, \ldots, p_K) = -\sum_{i=1}^{K} p_i \log(p_i) \).

Let \(U_1, U_2, \ldots \) be the letters generated by a memoryless source with alphabet \(\mathcal{U} = \{u_1, u_2, \ldots, u_K\} \), i.e., \(U_1, U_2, \ldots \) are i.i.d. random variables taking values in the alphabet \(\mathcal{U} \) according to the distribution \(q = \{q_1, q_2, \ldots, q_K\} \).

(b) We want to compress this source without any idea about its distribution. Describe an optimal universal code that achieves this goal. Give a proof of its optimality.

Hint: Use the same idea as for the binary source case.

(c) What if the source is not i.i.d. Will your code still be optimal?

Problem 3. Suppose \(p_1, p_2, \ldots, p_K \) are probability distributions on an alphabet \(\mathcal{U} \). Let \(H_1, \ldots, H_K \) be the entropies of these distributions, and let \(H = \max_k H_k \). Fix \(\epsilon > 0 \) and for each \(n \geq 1 \) consider the set

\[
T(n, \epsilon) = \bigcup_k T(n, p_k, \epsilon)
\]

where \(T(n, p_k, \epsilon) \) is the set of \(\epsilon \)-typical sequences of length \(n \) with respect to the distribution \(p_k \), i.e., \(T(n, p_k, \epsilon) = \{ u^n \in \mathcal{U}^n : \forall u' \in \mathcal{U} \left| \frac{1}{n} N_w(u^n) - p_k(u') \right| < \epsilon p_k(u') \} \) where \(N_w(u^n) \) is the number of occurrences of \(u' \) in sequence \(u^n \).

Suppose that \(U_1, U_2, \ldots \) are i.i.d. with distribution \(p \) where \(p \) is one of \(p_1, \ldots, p_K \).
(a) Show that \(\lim_{n \to \infty} \Pr \left((U_1, \ldots, U_n) \in T(n, \epsilon) \right) = 1 \). (In particular for any \(\delta > 0 \), for \(n \) large enough \(\Pr \left((U_1, \ldots, U_n) \in T(n, \epsilon) \right) > 1 - \delta \).

(b) Show that for large enough \(n \), \(\frac{1}{n} \log |T(n, \epsilon)| < (1 + \epsilon)H + \epsilon \).

(c) Fix \(R > H \) and \(\delta > 0 \). Show that for \(n \) large enough there is a prefix-free code \(c : U^n \to \{0, 1\}^* \) such that

\[
\Pr \left(\text{length} \left(c(U^n) \right) < nR \right) > 1 - \delta
\]

whenever \(U_1, U_2, \ldots \) are i.i.d. with distribution \(p \), where \(p \) is one of \(p_1, \ldots, p_K \).

Problem 4. Let the alphabet be \(\mathcal{X} = \{a, b\} \). Consider the infinite sequence \(X_1^\infty = ababababababab\ldots \)

(a) What is the compressibility of \(\rho(X_1^\infty) \) using finite-state machines (FSM) as defined in class? Justify your answer.

(b) Design a specific FSM, call it M, with at most 4 states and as low a \(\rho_M(X_1^\infty) \) as possible. What compressibility do you get?

(c) Using only the result in point (a) but no specific calculations, what is the compressibility of \(X_1^\infty \) under the Lempel–Ziv algorithm, i.e., what is \(\rho_{LZ}(X_1^\infty) \)?

(d) Re-derive your result from point (c) but this time by means of an explicit computation.