ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 11
Information Theory and Coding
Homework 5
Oct. 18, 2022

Problem 1. Assume $\left\{X_{n}\right\}_{-\infty}^{\infty}$ and $\left\{Y_{n}\right\}_{-\infty}^{\infty}$ are two i.i.d. processes (individually) with the same alphabet, with the same entropy rate $H\left(X_{0}\right)=H\left(Y_{0}\right)=1$ and independent from each other. We construct two processes Z and W as follows:

- To construct the process Z, we flip a fair coin and depending on the result $\Theta \in\{0,1\}$ we select one of the processes. In other words, $Z_{n}=\Theta X_{n}+(1-\Theta) Y_{n}$.
- To construct the process W, we do the coin flip at every time n. In other words, at every time n we flip a coin and depending on the result $\Theta_{n} \in\{0,1\}$ we select X_{n} or Y_{n} as follows $W_{n}=\Theta_{n} X_{n}+\left(1-\Theta_{n}\right) Y_{n}$.
(a) Are Z and W stationary processes? Are they i.i.d. processes?
(b) Find the entropy rate of Z and W. How do they compare? When are they equal? Recall that the entropy rate of the process U (if exists) is $\lim _{n \rightarrow \infty} \frac{1}{n} H\left(U_{1}, \cdots, U_{n}\right)$.
Problem 2. We have shown in class that

$$
\binom{n}{k} \leq 2^{n \mathrm{~h}_{2}\left(\frac{k}{n}\right)}
$$

(a) Given $n \in \mathbb{N}_{+}$and $n_{1}, n_{2}, \ldots, n_{K} \in \mathbb{N}$ such that $\sum_{i=1}^{n} n_{i}=n$, we define the quantity $\binom{n}{n_{1} n_{2} \ldots n_{K}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{K}!}$.
Show that

$$
\binom{n}{n_{1} n_{2} \ldots n_{K}} \leq 2^{n \mathrm{~h}\left(p_{1}, p_{2}, \ldots, p_{K}\right)}
$$

where $p_{i}=\frac{n_{i}}{n}$ and $\mathrm{h}\left(p_{1}, \ldots, p_{K}\right)=-\sum_{i=1}^{K} p_{i} \log \left(p_{i}\right)$.
Let U_{1}, U_{2}, \ldots be the letters generated by a memoryless source with alphabet $\mathcal{U}=\left\{u_{1}, u_{2}, \ldots, u_{K}\right\}$, i.e., U_{1}, U_{2}, \ldots are i.i.d. random variables taking values in the alphabet \mathcal{U} according to the distribution $q=\left\{q_{1}, q_{2}, \ldots, q_{K}\right\}$.
(b) We want to compress this source without any idea about its distribution. Describe an optimal universal code that achieves this goal. Give a proof of its optimality. Hint: Use the same idea as for the binary source case.
(c) What if the source is not i.i.d. Will your code still be optimal?

Problem 3. Suppose $p_{1}, p_{2}, \ldots, p_{K}$ are probability distributions on an alphabet \mathcal{U}. Let H_{1}, \ldots, H_{K} be the entropies of these distributions, and let $H=\max _{k} H_{k}$. Fix $\epsilon>0$ and for each $n \geq 1$ consider the set

$$
T(n, \epsilon)=\bigcup_{k} T\left(n, p_{k}, \epsilon\right)
$$

where $T\left(n, p_{k}, \epsilon\right)$ is the set of ϵ-typical sequences of length n with respect to the distribution p_{k}, i.e., $T\left(n, p_{k}, \epsilon\right)=\left\{u^{n} \in \mathcal{U}^{n}: \forall_{u^{\prime} \in \mathcal{U}}\left|\frac{1}{n} N_{u^{\prime}}\left(u^{n}\right)-p_{k}\left(u^{\prime}\right)\right|<\epsilon p_{k}\left(u^{\prime}\right)\right\}$ where $N_{u^{\prime}}\left(u^{n}\right)$ is the number of occurrences of u^{\prime} in sequence u^{n}.

Suppose that U_{1}, U_{2}, \ldots are i.i.d. with distribution p where p is one of p_{1}, \ldots, p_{K}.
(a) Show that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left(U_{1}, \ldots, U_{n}\right) \in T(n, \epsilon)\right)=1$. (In particular for any $\delta>0$, for n large enough $\operatorname{Pr}\left(\left(U_{1}, \ldots, U_{n}\right) \in T(n, \epsilon)\right)>1-\delta$.)
(b) Show that for large enough $n, \frac{1}{n} \log |T(n, \epsilon)|<(1+\epsilon) H+\epsilon$.
(c) Fix $R>H$ and $\delta>0$. Show that for n large enough there is a prefix-free code $c: \mathcal{U}^{n} \rightarrow\{0,1\}^{*}$ such that

$$
\operatorname{Pr}\left(\text { length }\left(c\left(U^{n}\right)\right)<n R\right)>1-\delta
$$

whenever U_{1}, U_{2}, \ldots are i.i.d. with distribution p, where p is one of p_{1}, \ldots, p_{K}.
Problem 4. Let the alphabet be $\mathcal{X}=\{a, b\}$. Consider the infinite sequence $X_{1}^{\infty}=$ abababababababab...
(a) What is the compressibility of $\rho\left(X_{1}^{\infty}\right)$ using finite-state machines (FSM) as defined in class? Justify your answer.
(b) Design a specific FSM, call it M, with at most 4 states and as low a $\rho_{\mathrm{M}}\left(X_{1}^{\infty}\right)$ as possible. What compressibility do you get?
(c) Using only the result in point (a) but no specific calculations, what is the compressibility of X_{1}^{∞} under the Lempel-Ziv algorithm, i.e., what is $\rho_{\mathrm{LZ}}\left(X_{1}^{\infty}\right)$?
(d) Re-derive your result from point (c) but this time by means of an explicit computation.

