PROBLEM 1. Consider a two-way communication system where two parties communicate via a common output they both can observe and influence. Denote the common output by \(Y \), and the signals emitted by the two parties by \(x_1 \) and \(x_2 \) respectively. Let \(p(y|x_1, x_2) \) model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

\[
\begin{align*}
\text{enc}_1 : \{1, \ldots, 2^{nR_1}\} &\to \mathcal{X}_1^n \\
\text{dec}_1 : \mathcal{Y}^n \times \{1, \ldots, 2^{nR_1}\} &\to \{1, \ldots, 2^{nR_2}\} \\
\text{enc}_2 : \{1, \ldots, 2^{nR_2}\} &\to \mathcal{X}_2^n \\
\text{dec}_2 : \mathcal{Y}^n \times \{1, \ldots, 2^{nR_2}\} &\to \{1, \ldots, 2^{nR_1}\}
\end{align*}
\]

with which the parties encode their own message and decode the other party’s messages. (Note that when a party is decoding the other party’s message, it can make use of the knowledge of its own message).

We will say that the rate pair \((R_1, R_2)\) is achievable, if for any \(\epsilon > 0 \), there exist encoders and decoders with the above form for which the average error probability is less than \(\epsilon \).

Consider the following ‘random coding’ method to construct the encoders:

(i) Choose probability distributions \(p_j \) on \(\mathcal{X}_j \), \(j = 1, 2 \).

(ii) Choose \(\{\text{enc}_i(m_i) : m_i = 1, \ldots, 2^{nR_i}, i = 1, \ldots, n\} \) i.i.d., each having distribution as \(p_1 \). Similarly, choose \(\{\text{enc}_2(m_2) : m_2 = 1, \ldots, 2^{nR_2}, i = 1, \ldots, n\} \) i.i.d., each having distribution as \(p_2 \), independently of the choices for \(\text{enc}_1 \).

For the decoders we will use typicality decoders:

(i) Set \(p(x_1, x_2, y) = p_1(x_1)p_2(x_2)p(y|x_1, x_2) \). Choose a small \(\epsilon > 0 \) and consider the set \(T \) of \(\epsilon \)-typical \((x_1^n, x_2^n, y^n) \)'s with respect to \(p \).

(ii) For decoder 1: given \(y^n \) and the correct \(m_1 \), \(\text{dec}_1 \) will declare \(\hat{m}_2 \) if it is the unique \(m_2 \) for which \((\text{enc}_1(m_1), \text{enc}_2(m_2), y^n) \in T \). If there is no such \(m_2 \), \(\text{dec}_1 \) outputs 0. (Similar description applies to Decoder 2.)

(a) Given that \(m_1 \) and \(m_2 \) are the transmitted messages, show that \((\text{enc}_1(m_1), \text{enc}_2(m_2), Y^n) \in T \) with high probability.

(b) Given that \(m_1 \) and \(m_2 \) are the transmitted messages, and \(\hat{m}_1 \neq m_1 \) what is the probability distribution of \((\text{enc}_1(\hat{m}_1), \text{enc}_2(m_2), Y^n) \)?

(c) Under the assumptions in (b) show that the \(\Pr\{(\text{enc}_1(\hat{m}_1), \text{enc}_2(m_2), Y^n) \in T\} \leq 2^{-nI(X_1; X_2 Y)} \).

(d) Show that all rate pairs satisfying

\[
R_1 \leq I(X_1; YX_2), \quad R_2 \leq I(X_2; YX_1)
\]

for some \(p(x_1, x_2) = p(x_1)p(x_2) \) are achievable.
(e) For the case when X_1, X_2, Y are all binary and Y is the product of X_1 and X_2, show that the achievable region is strictly larger than what we can obtain by ‘half duplex communication’ (i.e., the set of rates that satisfy $R_1 + R_2 \leq 1$.)

Problem 2. Suppose we are told that for any n and M, for any binary code with blocklength n, with M codewords, the minimum distance d_{min} satisfies $d_{\text{min}} \leq d_0(M, n)$ where d_0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d_0 can be improved to the following upper bound: for any n, M, for any binary code with blocklength n with M codewords

$$d_{\text{min}} \leq d_1(M, n)$$

where $d_1(M, n) = \min_{k \leq n} d_0([M/2^k], n - k)$.

(b) Consider the trivial bound

$$d_0(M, n) = \begin{cases} n, & M \geq 2 \\ \infty, & M \leq 1 \end{cases}$$

What is the bound d_1 constructed via (a) for this d_0?

(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \leq i \leq n$ and let a_1, \ldots, a_M be the ith bits if the M codewords. Suppose M_1 of the a_m’s are ’1’ and M_0 of them are ’0’. Show that

$$\sum_{m=1}^{M} \sum_{m' = 1 \atop m' \neq m}^{M} d_H(a_m, a'_m) = 2M_0M_1 \leq M^2/2.$$

(d) Show that for any binary code with $M \geq 2$ codewords x_1, \ldots, x_M of blocklength n

$$M(M - 1)d_{\text{min}} \leq \sum_{m=1}^{M} \sum_{m' = 1 \atop m' \neq m}^{M} d_H(x_m, x_{m'}) \leq nM^2/2;$$

consequently, $d_{\text{min}} \leq \lfloor \frac{1}{2} n \frac{M}{M - 1} \rfloor$.

Problem 3. Let $W : \{0, 1\} \rightarrow \mathcal{Y}$ be a channel where the input is binary and where the output alphabet is \mathcal{Y}. The Bhattacharyya parameter of the channel W is defined as

$$Z(W) = \sum_{y \in \mathcal{Y}} \sqrt{W(y|0)W(y|1)}.$$

Let X_1, X_2 be two independent random variables uniformly distributed in $\{0, 1\}$ and let Y_1 and Y_2 be the output of the channel W when the input is X_1 and X_2 respectively, i.e., $P_{Y_1, Y_2|X_1, X_2}(y_1, y_2|x_1, x_2) = W(y_1|x_1)W(y_2|x_2)$. Define the channels $W^- : \{0, 1\} \rightarrow \mathcal{Y}^2$ and $W^+ : \{0, 1\} \rightarrow \mathcal{Y}^2 \times \{0, 1\}$ as follows:

- $W^-(y_1, y_2|u_1) = P[Y_1 = y_1, Y_2 = y_2|X_1 \oplus X_2 = u_1]$ for every $u_1 \in \{0, 1\}$ and every $y_1, y_2 \in \mathcal{Y}$, where \oplus is the XOR operation.
\(W^+(y_1, y_2, u_1|u_2) = P[Y_1 = y_1, Y_2 = y_2, X_1 \oplus X_2 = u_1|X_2 = u_2] \) for every \(u_1, u_2 \in \{0, 1\} \) and every \(y_1, y_2 \in \mathcal{Y} \).

(a) Show that \(W^-(y_1, y_2|u_1) = \frac{1}{2} \sum_{u_2 \in \{0, 1\}} W(y_1|u_1 \oplus u_2)W(y_2|u_2). \)

(b) Show that \(W^+(y_1, y_2, u_1|u_2) = \frac{1}{2} W(y_1|u_1 \oplus u_2)W(y_2|u_2). \)

(c) Show that \(Z(W^+) = Z(W)^2. \)

For every \(y \in \mathcal{Y} \) define \(\alpha(y) = W(y|0), \beta(y) = W(y|1) \) and \(\gamma(y) = \sqrt{\alpha(y)\beta(y)}. \)

(d) Show that
\[
Z(W^-) = \sum_{y_1, y_2 \in \mathcal{Y}} \frac{1}{2} \sqrt{\left(\alpha(y_1)\alpha(y_2) + \beta(y_1)\beta(y_2)\right)\left(\alpha(y_1)\beta(y_2) + \beta(y_1)\alpha(y_2)\right)}.
\]

(e) Show that for every \(x, y, z, t \geq 0 \) we have \(\sqrt{x + y + z + t} \leq \sqrt{x} + \sqrt{y} + \sqrt{z} + \sqrt{t}. \)

Deduce that
\[
Z(W^-) \leq \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_1)\gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_2)\gamma(y_1) \right)
+ \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_2)\gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_1)\gamma(y_2) \right).
\]

(f) Show that every sum in (1) is equal to \(Z(W) \). Deduce that \(Z(W^-) \leq 2Z(W). \)

Problem 4. For a given value \(0 \leq z_0 \leq 1 \), define the following random process:

\[
Z_0 = z_0, \quad Z_{i+1} = \begin{cases}
Z_i^2 & \text{with probability } 1/2 \\
2Z_i - Z_i^2 & \text{with probability } 1/2
\end{cases} \quad i \geq 0,
\]

with the sequence of random choices made independently. Observe that the \(Z \) process keeps track of the polarization of a Binary Erasure Channel with erasure probability \(z_0 \) as it is transformed by the polar transform: \(P(Z_i = z) \) is exactly the fraction of Binary Erasure Channels having an erasure probability \(z \) among the \(2^i \) BEC channels which are synthesized by the polar transform at the \(i \)th level. The aim of this problem is to prove that for any \(\delta > 0 \), \(P[Z_i \in (\delta, 1-\delta)] \to 0 \) as \(i \) gets large.

(a) Define \(Q_i = \sqrt{Z_i(1-Z_i)} \). Find \(f_1(z) \) and \(f_2(z) \) so that

\[
Q_{i+1} = Q_i \times \begin{cases}
f_1(Z_i) & \text{with probability } 1/2, \\
f_2(Z_i) & \text{with probability } 1/2.
\end{cases}
\]

(b) Show that \(f_1(z) + f_2(z) \leq \sqrt{3} \). Based on this, find a \(\rho < 1 \) so that

\[
\mathbb{E}[Q_{i+1} | Z_0, \ldots, Z_i] \leq \rho Q_i.
\]

(c) Show that, for the \(\rho \) you found in (b), \(\mathbb{E}[Q_i] \leq \frac{1}{2}\rho^i. \)

(d) Show that

\[
P[Z_i \in (\delta, 1-\delta)] = P[Q_i > \sqrt{\delta(1-\delta)}] \leq \frac{\rho^i}{2\sqrt{\delta(1-\delta)}}.
\]

Deduce that \(P[Z_i \in (\delta, 1-\delta)] \to 0 \) as \(i \) gets large.