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Adiabatic quantum computing (AQC) started as an approach to solving optimization problems
and has evolved into an important universal alternative to the standard circuit model of quantum
computing, with deep connections to both classical and quantum complexity theory and condensed
matter physics. This review gives an account of the major theoretical developments in the field, while
focusing on the closed-system setting. The review is organized around a series of topics that are
essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments
and limitations, and its scope in the more general setting of computational complexity theory. Several
variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of
explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the
universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable
space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to
success and their possible resolutions are discussed.
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I. INTRODUCTION

Quantum computation (QC) originated with Benioff’s
proposals for quantum Turing machines (Benioff, 1980,
1982) and Feynman’s ideas for circumventing the difficulty
of simulating quantum mechanics by classical computers
(Feynman, 1982). This led to Deutsch’s proposal for universal
QC in terms of what has become the “standard” model: the
circuit or gate model of QC (Deutsch, 1989). Adiabatic
quantum computation (AQC) is based on an idea that is quite
distinct from the circuit model. Whereas in the latter a
computation may in principle evolve in the entire Hilbert
space and is encoded into a series of unitary quantum logic
gates, in AQC the computation proceeds from an initial
Hamiltonian whose ground state is easy to prepare, to a final
Hamiltonian whose ground state encodes the solution to the
computational problem. The adiabatic theorem guarantees that
the system will track the instantaneous ground state provided
the Hamiltonian varies sufficiently slowly. It turns out that this
approach to QC has deep connections to condensed matter
physics, computational complexity theory, and heuristic
algorithms.
In its first incarnation, the idea of encoding the solution to a

computational problem in the ground state of a quantum
Hamiltonian appeared as early as 1988, in the context of
solving classical combinatorial optimization problems, where
it was called quantum stochastic optimization (Apolloni,
Carvalho, and de Falco, 1989).1 It was renamed quantum
annealing (QA) by Apolloni, Cesa-Bianchi, and de Falco
(1988) and reinvented several times (Somorjai, 1991; Amara,
Hsu, and Straub, 1993; Finnila et al., 1994; Kadowaki and
Nishimori, 1998).2 These early papers emphasized that QA
was to be understood as an algorithm that exploits simulated
quantum (rather than thermal) fluctuations and tunneling, thus
providing a quantum-inspired version of simulated annealing
(SA) (Kirkpatrick, Gelatt, and Vecchi, 1983). The first direct
comparison between QA and SA (Kadowaki and Nishimori,
1998) suggested that QA can be more powerful.
A very different approach was taken via an experimental

implementation of QA in a disordered quantum ferromagnet
(Brooke et al., 1999; Brooke, Rosenbaum, and Aeppli, 2001).
This provided the impetus to reconsider QA from the
perspective of quantum computing, i.e., to consider a
dedicated device that solves optimization problems by explo-
iting quantum evolution. Thus was born the idea of the
quantum adiabatic algorithm (QAA) (Farhi et al., 2000,
2001) [also referred to as adiabatic quantum optimization
(AQO) (Smelyanskiy, Toussaint, and Timucin, 2001;
Reichardt, 2004)], wherein a physical quantum computer

1Even though Apolloni, Carvalho, and de Falco (1989) was
published in 1989, it was submitted in 1988, before Apolloni,
Cesa-Bianchi, and de Falco (1988), which referenced it.

2It was called the “quasiquantal method” by Somorjai (1991), the
“imaginary-time algorithm” by Amara, Hsu, and Straub (1993), and
quantum annealing by Finnila et al. (1994) and Kadowaki and
Nishimori (1998). The latter term has become widely accepted.
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solves a combinatorial optimization problem by evolving
adiabatically in its ground state. The term adiabatic quantum
computation we use here was introduced by van Dam, Mosca,
and Vazirani (2001), although the context was still
optimization.3

Adiabatic quantum algorithms for optimization problems
typically use “stoquastic” Hamiltonians, characterized by
having only nonpositive off-diagonal elements in the compu-
tational basis. Adiabatic quantum computation with non-
stoquastic Hamiltonians is as powerful as the circuit model
of quantum computation (Aharonov et al., 2007). In other
words, nonstoquastic AQC and all other models for universal
quantum computation can simulate one another with at most
polynomial resource overhead. For this reason the contem-
porary use of the term AQC typically refers to the general,
nonstoquastic setting, thus extending beyond optimization to
any computational problem. When discussing the case of
stoquastic Hamiltonians we use the term “stoquastic AQC”
(StoqAQC).4

For most of this review we essentially adopt the definition
of AQC from Aharonov et al. (2007), as this definition allows
for the proof of the equivalence with the circuit model and is
thus used to establish the universality of AQC. Interestingly,
this proof builds on one of the first QC ideas due to Feynman,
which was later shown to allow a general purpose quantum
computation to be embedded in the ground state of a quantum
system (Feynman, 1985; Kitaev, Shen, and Vyalyi, 2000). A
related ground state embedding approach was independently
pursued by Mizel, Mitchell, and Cohen (2001, 2002) around
the same time as the original development of the QAA. To
define AQC, we first need the concept of a k-local
Hamiltonian, which is a Hermitian matrix H acting on the
space of p-state particles that can be written as H ¼ P

r
i¼1 Hi

where each Hi acts nontrivially on at most k particles, i.e.,
Hi ¼ h ⊗ 1 where h is a Hamiltonian on at most k particles,
and 1 denotes the identity operator.
Definition 1 (adiabatic quantum computation). A k-local

adiabatic quantum computation is specified by two k-local
Hamiltonians H0 and H1 acting on n p-state particles, p ≥ 2.
The ground state of H0 is unique and is a product state. The
output is a state that is ε close in l2 norm to the ground state of
H1. Let sðtÞ∶ ½0; tf� ↦ ½0; 1� (the “schedule”) and let tf be the
smallest time such that the final state of an adiabatic evolution
generated byHðsÞ ¼ ð1 − sÞH0 þ sH1 for time tf is ε close in
l2 norm to the ground state of H1.
Several comments are in order. (1) A uniqueness require-

ment was imposed on the ground state of H1 by Aharonov
et al. (2007), but this is not necessary. For example, in the
setting where H1 represents a classical optimization problem,
multiple final ground states do not pose a problem as any of

the final states represent a solution to the optimization
problem. (2) Sometimes it is beneficial to consider adiabatic
quantum computation in an excited state (see, e.g., Sec. VI.C).
(3) As already noted by Aharonov et al. (2007), it is useful to
allow for more general “paths” between H0 and H1, e.g., by
introducing an intermediate “catalyst” Hamiltonian that van-
ishes at s ¼ 0, 1 (see, e.g., Sec. VII.E).
A crucial question that will occupy us throughout this

review is the cost of running an algorithm in AQC. In the
circuit model the cost is equated with the number of gates, so
one cost definition would be to count the number of gates
needed to simulate the equivalent adiabatic process. This cost
definition presupposes that the circuit model is fundamental,
which may be unsatisfactory. In AQC one might be tempted to
just use the run time tf, but in order for this quantity to be
meaningful it is necessary to define an appropriate energy
scale for the Hamiltonian. Aharonov et al. (2007) defined the
cost of the adiabatic algorithm to be the dimensionless
quantity

cost ¼ tfmax
s

kHðsÞk; ð1Þ

in order to prevent the cost from being made arbitrarily small
by changing the time units or distorting the scaling of the
algorithm by multiplying the Hamiltonians by some size-
dependent factor.5 From here on we focus on the run time tf,
which should be compared to the circuit depth of analogous
circuit model algorithms, whereas the full cost in Eq. (1)
should be compared to the circuit gate count.
The run time tf of an adiabatic algorithm scales at worst as

1=Δ3, where Δ is the minimum eigenvalue gap between the
ground state and the first excited state of the Hamiltonian of
the adiabatic algorithm (Jansen, Ruskai, and Seiler, 2007). If
the Hamiltonian is varied sufficiently smoothly, one can
improve this to Oð1=Δ2Þ up to a polylogarithmic factor in
Δ (Elgart and Hagedorn, 2012). While these are useful
sufficient conditions, they involve bounding the minimum
eigenvalue gap of a complicated many-body Hamiltonian, a
notoriously difficult problem. This is one reason that AQC has
generated so much interest among physicists: it has a rich
connection to well-studied problems in condensed matter
physics. For example, because of the dependence of the
run time on the gap, the performance of quantum adiabatic
algorithms is strongly influenced by the type of quantum
phase transition the same system would undergo in the
thermodynamic limit (Latorre and Orus, 2004).
Nevertheless, a number of examples are known where the

gap analysis can be carried out. For example, adiabatic
quantum computers can perform a process analogous to
Grover search (Grover, 1997) and thus provide a quadratic

3The first documented use of the term “adiabatic quantum
computation” was by Averin (1998), but the context was an adiabatic
implementation of a quantum logic gate in the circuit model.

4Quantum annealing, like StoqAQC, currently usually involves
stoquastic Hamiltonians; we differentiate between them as we restrict
StoqAQC purely to the case of closed-system evolutions, whereas
QA refers to a (not necessarily adiabatic) evolution in an open
system.

5Unless stated otherwise, we always use k · k to denote the
operator norm for operators:

kAk ¼ sup fkAjψik∶ jψi ∈ H with hψ jψi ¼ 1g

(i.e., the largest singular value of the operator A), and the Euclidean
vector norm for vectors. Which one is used will be clear by the
context.
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speedup over the best possible classical algorithm for the
Grover search problem (Roland and Cerf, 2002). Other
examples are known where the gap analysis can be used to
demonstrate that AQC provides a speedup over classical
computation, including adiabatic versions of some of the
keystone algorithms of the circuit model. However, much
more common is the scenario either where the gap analysis
reveals no speedup over classical computation or where a clear
answer to the speedup question is unavailable. In fact, the least
is known about adiabatic quantum speedups in the original
setting of solving classical combinatorial optimization prob-
lems. This remains an area of very active research, partly due
to the original (still unmaterialized) hope that the QAAwould
deliver quantum speedups for nondeterministic polynomial
(NP-)complete problems (Farhi et al., 2001), and partly due
the availability of commercial quantum annealing devices
such as those manufactured by D-Wave Systems Inc. (Johnson
et al., 2011), designed to solve optimization problems using
stoquastic Hamiltonians.
The goal of this article is to review the field of AQC from its

inception, with a focus on the closed-system case. That is, we
omit the topic of AQC in open systems coupled to an
environment. This includes all experimental work on AQC,
and all work on quantum error correction and suppression
methods for AQC, as these topics deserve a separate review
(Albash and Lidar, 2018) and including them here would limit
our ability to cover the many years of work on AQC in closed
systems, an extremely rich topic with many results. For the
same reasons we also omit the related fields of holonomic QC
(Zanardi and Rasetti, 1999), topological QC (Nayak et al.,
2008), and adiabatic state preparation for quantum simulation
(Babbush, Love, and Aspuru-Guzik, 2014). To achieve our
goal we organized this review around a series of topics that are
essential to an understanding of the underlying principles of
AQC, its algorithmic accomplishments and limitations, and its
scope in the more general setting of computational complexity
theory.
We begin by reviewing the adiabatic theorem in Sec. II. The

adiabatic theorem forms the backbone of AQC: it provides a
sufficient condition for the success of the computation and in
doing so provides the run time of a computation in terms of the
eigenvalue gap Δ of the Hamiltonian and the Hamiltonian
time derivative. In fact there is not one single adiabatic
theorem, and we review a number of different variants that
provide different run-time requirements, under different
smoothness and differentiability assumptions about the
Hamiltonian.
Next we review in Sec. III the handful of explicit algorithms

for which AQC is known to give a speedup over classical
computation. The emphasis is on “explicit,” since Sec. IV
provides several proofs for the universality of AQC in terms of
its ability to efficiently simulate the circuit model, and vice
versa. This means that every quantum algorithm that provides
a speedup in the circuit model [many of which are known
(Jordan, 2016b)] can in principle be implemented with up to
polynomial overhead in AQC. That the number of explicit
AQC algorithms is still small is therefore likely to be a
reflection of the relatively modest amount of effort that has
gone into establishing such results compared to the circuit
model. However, there is also a real difficulty, in that

performing the gap analysis in order to establish the actual
scaling (beyond the polynomial-time equivalence) is, as
already mentioned, in many cases highly nontrivial. A second
nontrivial aspect of establishing a speedup by AQC is that
when such a speedup is polynomial, relying on universality is
insufficient, since the polynomial overhead involved in
implementing the transformation from the circuit model to
AQC can then swamp the speedup. A good example is the
case of Grover’s algorithm, where direct use of the equiv-
alence to the circuit model does not suffice; instead, what is
required is a careful analysis and choice of the adiabatic
schedule sðtÞ in order to realize the quantum speedup.
In Sec. V we go beyond universality into Hamiltonian

quantum complexity theory. This is an active contemporary
research area that started with the introduction of the complex-
ity class “quantum Merlin-Arthur” (QMA) as the natural
quantum generalization of the classical complexity classes NP
and MA (Kitaev, Shen, and Vyalyi, 2000). The theory of
QMA completeness deals with decision problems that are
efficiently checkable using quantum computers. It turns out
that these decision problems can be formulated naturally in
terms of k-local Hamiltonians of the same type that appear in
the proofs of the universality of AQC. Thus universality and
Hamiltonian quantum complexity studies are often pursued
hand in hand, and a reduction of k as well as the dimension-
ality p of the particles appearing in these constructions is one
of the main goals. For example, already k ¼ 2 and p ¼ 2 leads
to both universal AQC and QMA-complete Hamiltonians in
2D, while in 1D p > 2 is needed for both.6

We turn our attention to StoqAQC in Sec. VI. This is the
setting of the vast majority of AQC work to date. The final
Hamiltonian H1 is assumed to be a classical Ising model
Hamiltonian, typically (but not always) representing a hard
optimization problem such as a spin glass. The initial
Hamiltonian H0 is typically assumed to be proportional to
a transverse field, i.e.,

P
i σ

x
i , whose ground state is the

uniform superposition state in the computational basis. AQC
with stoquastic Hamiltonians is probably less powerful than
universal quantum computation, but examples can be con-
structed which show that it may nevertheless be more power-
ful than classical computation. Moreover, if we relax the
definition of AQC to allow for computation using excited
states, it turns out that stoquastic Hamiltonians can even be
QMA complete and support universal AQC. We first review
examples where it is known that StoqAQC does not outper-
form classical computation (essentially because the eigen-
value gap Δ decreases rapidly with problem size but classical
algorithms do not suffer a slowdown), then discuss examples
where StoqAQC offers a quantum scaling advantage over
simulated annealing in the sense that it outperforms classical
simulated annealing but not necessarily other classical algo-
rithms, and finally point out examples where it is currently
not known whether StoqAQC offers a quantum speedup,
but one hopes that it does. We also discuss the role of

6We say that H is a dD (d-dimensional) Hamiltonian if the
particles are arranged on a d-dimensional grid and the summands of
H couple only pairs of nearest-neighbor particles. Note that being dD
implies that the Hamiltonian is 2-local.
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potential quantum speedup mechanisms, in particular, tunnel-
ing and entanglement.
The somewhat bleak picture regarding StoqAQC should not

necessarily be a cause for pessimism. Some of the obstacles in
the way of a quantum speedup can be overcome or circum-
vented, as discussed in Sec. VII. In all cases this involves
modifying some aspect of the Hamiltonian, either by optimiz-
ing the schedule sðtÞ or by adding certain terms to the
Hamiltonian such that small gaps are avoided. This can result
in a nonstoquastic Hamiltonian whose final ground state is the
same as that of the original Hamiltonian, with an exponen-
tially small gap (often corresponding to a first-order quantum
phase transition) changing into a polynomially small gap
(often corresponding to a second-order phase transition).
Another type of modification is to give up adiabatic evolution
itself and allow for diabatic transitions. While this results in
giving up the guarantee of convergence to the ground state
provided by the adiabatic theorem, it can be a strategy that
results in better run time scaling for the same Hamiltonian
than an adiabatic one.
We conclude with an outlook and discussion of future

directions in Sec. VIII. Various technical details are provided
in the Appendix.

II. ADIABATIC THEOREMS

The origins of the quantum adiabatic approximation date
back to Einstein’s “Adiabatenhypothese”: “If a system be
affected in a reversible adiabatic way, allowed motions are
transformed into allowed motions” (Einstein, 1914). Ehrenfest
was the first to appreciate the importance of adiabatic
invariance, guessing—before the advent of a complete quan-
tum theory—that quantum laws would only allow motions
which are invariant under adiabatic perturbations (Ehrenfest,
1916). The more familiar, modern version of the adiabatic
approximation was put forth by Born and Fock (1928) for the
case of discrete spectra, after the development of the Born-
Oppenheimer approximation for the separation of electronic
and nuclear degrees of freedom a year earlier (Born and
Oppenheimer, 1927). Kato (1950) put the approximation on a
firm mathematical foundation in 1950 and arguably proved
the first quantum adiabatic theorem.
The adiabatic approximation states, roughly, that for a

system initially prepared in an eigenstate (e.g., the ground
state) jε0ð0Þi of a time-dependent Hamiltonian HðtÞ, the time
evolution governed by the Schrödinger equation

i
∂jψðtÞi

∂t ¼ HðtÞjψðtÞi ð2Þ

(we set ℏ≡ 1 from now on) will approximately keep the
actual state jψðtÞi of the system in the corresponding
instantaneous ground state (or other eigenstate) jε0ðtÞi of
HðtÞ, provided that HðtÞ varies “sufficiently slowly.”
Quantifying the exact nature of this slow variation is the
subject of the adiabatic theorem (AT), which exists in many
variants. In this section we provide an overview of these
variants of the AT, emphasizing aspects that are pertinent to
AQC. We discuss the “folklore” adiabatic condition that the
total evolution time tf should be large on the time scale set by

the square of the inverse gap, and the question of how to
ensure a high fidelity between the actual state and the ground
state. We then discuss a variety of rigorous versions of the AT,
emphasizing different assumptions and consequently different
performance guarantees. Throughout this discussion, it is
important to keep in mind that ultimately the AT provides
only an upper bound on the evolution time required to achieve
a certain fidelity between the actual state and the target
eigenstate of HðtÞ.

A. Approximate versions

Let jεjðtÞi (j ∈ f0; 1; 2;…g) denote the instantaneous
eigenstate of HðtÞ with energy εjðtÞ such that εjðtÞ ≤
εjþ1ðtÞ∀ j; t, i.e., HðtÞjεjðtÞi ¼ εjðtÞjεjðtÞi and j ¼ 0

denotes the (possibly degenerate) ground state. Assume
that the initial state is prepared in one of the eigenstates
jεjð0Þi.
The simplest as well as one of the oldest traditional versions

of the adiabatic approximation states that a system initialized
in an eigenstate jεjð0Þi will remain in the same instantaneous
eigenstate jεjðtÞi (up to a global phase) for all t ∈ ½0; tf�,
where tf denotes the final time, provided (Messiah, 1962)

max
t∈½0;tf �

jhεij∂tεjij
jεi − εjj

¼ max
t∈½0;tf �

jhεij∂tHjεjij
jεi − εjj2

≪ 1 ∀ i ≠ j: ð3Þ

This version has been critiqued (Marzlin and Sanders, 2004;
Tong et al., 2005; Du et al., 2008; Wu et al., 2008) on the basis
of arguments and examples involving a separate, independent
time scale. Indeed, if the Hamiltonian includes an oscillatory
driving term then the eigenstate population will oscillate with
a time scale determined by this term, that is, independent of tf,
even if the adiabatic criterion (3) is satisfied.7

A more careful statement of the adiabatic condition that
excludes such additional time scales is thus required. The first
step is to assume that the Hamiltonian HtfðtÞ in the
Schrödinger equation ∂jψ tfðtÞi=∂t ¼ −iHtfðtÞjψ tf ðtÞi can
be written as HtfðstfÞ ¼ HðsÞ, where s≡ t=tf ∈ ½0; 1� is
the dimensionless time, and HðsÞ is tf independent. This
includes the “interpolating” Hamiltonians of the type often
considered in AQC, i.e., HðsÞ ¼ AðsÞH0 þ BðsÞH1 [where
AðsÞ and BðsÞ are monotonically decreasing and increasing,
respectively] and excludes cases with multiple time scales.8

The Schrödinger equation then becomes

7For example, it is easily checked that when HðtÞ ¼ aσzþ
b sinðωtÞσx, the adiabatic condition (3) reduces to jbωj ≪ a2.
However, even if this condition is satisfied the population can
oscillate between the two eigenstates: at resonance (when ω ≈ 2a)
the system undergoes Rabi oscillations with period π=jbj, a time scale
that is independent of tf .

8For example, a case such as HðtÞ ¼ aσz þ b sinðωtÞσx is now
excluded since after a change of variables we have HðsÞ ¼ aσz þ
b sinðωtfsÞσx and evidently HðsÞ still depends on tf .
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1

tf

∂jψ tfðsÞi
∂s ¼ −iHðsÞjψ tf ðsÞi; ð4Þ

which is the starting point for all rigorous adiabatic theorems.
A more careful adiabatic condition subject to this formu-

lation is given by (Amin, 2009)

1

tf
max
s∈½0;1�

jhεiðsÞj∂sHðsÞjεjðsÞij
jεiðsÞ − εjðsÞj2

≪ 1 ∀ j ≠ i: ð5Þ

The conditions (3) and (5) give rise to the widely used
criterion that the total adiabatic evolution time should be
large on the time scale set by the minimum of the square of the
inverse spectral gap ΔijðsÞ ¼ εiðsÞ − εjðsÞ. In most cases one
is interested in the ground state, so that ΔijðsÞ is replaced by

Δ≡ min
s∈½0;1�

ΔðsÞ ¼ min
s∈½0;1�

ε1ðsÞ − ε0ðsÞ: ð6Þ

However, arguments such as those leading to Eqs. (3) and (5)
are approximate in the sense that they do not result in strict
inequalities and do not result in bounds on the closeness
between the actual time-evolved state and the desired eigen-
state. We discuss this next.

B. Rigorous versions

The first rigorous adiabatic condition is due to Kato (1950)
and was followed by numerous alternative derivations and
improvements giving tighter bounds under various assump-
tions; see, e.g., Nenciu (1993), Avron and Elgart (1999),
Hagedorn and Joye (2002), Teufel (2003), Ambainis and
Regev (2004), Reichardt (2004), Jansen, Ruskai, and Seiler
(2007), O’Hara and O’Leary (2008), Lidar, Rezakhani, and
Hamma (2009), Cheung, Høyer, and Wiebe (2011), Elgart and
Hagedorn (2012), and Ge, Molnár, and Cirac (2015). All these
rigorous results are more severe in the gap condition than the
traditional criterion, and they involve a power of the norm of
time derivatives of the Hamiltonian, rather than a transition
matrix element.
We summarize a few of these results here and refer the

interested reader to the original literature for their proofs. For
simplicity we always assume that the system is initialized in
its ground state and that the gap is the ground state gap (6). We
also assume that for all s ∈ ½0; 1� the Hamiltonian HðsÞ has an
eigenprojector PðsÞ with eigenenergy ε0ðsÞ, and that the
gap never vanishes, i.e., Δ > 0.9 The ground state, and hence
the projector PðsÞ, is allowed to be (even infinitely) degen-
erate. PðsÞ represents the “ideal” adiabatic evolution.
Let PtfðsÞ ¼ jψ tfðsÞihψ tf ðsÞj. This is the projector onto the

time-evolved solution of the Schrödinger equation, i.e., the
“actual” state. Adiabatic theorems are usually statements
about the “instantaneous adiabatic distance” kPtfðsÞ −
PðsÞk between the projectors associated with the actual and
ideal evolutions, or the “final-time adiabatic distance”
kPtfð1Þ − Pð1Þk. Typically, adiabatic theorems give a bound

of the formOð1=tfÞ for the instantaneous case, and a bound of
the form Oð1=tnfÞ for any n ∈ N for the final-time case. After
squaring, these projector-distance bounds immediately
become bounds on the transition probability, defined as
jhψ⊥

tfðsÞjψ tf ðsÞij2, where jψ⊥
tfðsÞi ¼ QtfðsÞjψ tfðsÞi, with

Q ¼ I − P.

1. Inverse cubic gap dependence with generic HðsÞ
Kato’s work on the perturbation theory of linear operators

(Kato, 1950) introduced techniques based on resolvents and
complex analysis that have been widely used in subsequent
work. Jansen, Ruskai, and Seiler (2007) proved several
versions of the AT that build upon these techniques and that
rigorously establish the gap dependence of tf, without any
strong assumptions on the smoothness ofHðsÞ. Their essential
assumption is that the spectrum of HðsÞ has a band associated
with the spectral projection PðsÞ which is separated by a
nonvanishing gap ΔðsÞ from the rest. Here we present one of
their theorems.

Theorem 1. Suppose that the spectrum of HðsÞ restricted
to PðsÞ consists of mðsÞ eigenvalues separated by a gap
ΔðsÞ ¼ ε1ðsÞ − ε0ðsÞ > 0 from the rest of the spectrum of
HðsÞ, and that HðsÞ is twice continuously differentiable.
Assume that H, Hð1Þ, and Hð2Þ are bounded operators, an
assumption that is always fulfilled in finite-dimensional
spaces.10 Then for any s ∈ ½0; 1�,

kPtfðsÞ − PðsÞk ≤
mð0ÞkHð1Þð0Þk

tfΔ2ð0Þ þmðsÞkHð1ÞðsÞk
tfΔ2ðsÞ

þ 1

tf

Z
s

0

�
mkHð2Þk

Δ2
þ 7m

ffiffiffiffi
m

p kHð1Þk2
Δ3

�
dx.

ð7Þ
The numerator depends on the norm of the first or second
time derivative of HðsÞ, rather than the matrix element
that appears in the traditional versions of the adiabatic
condition.
Ignoring the m dependence for simplicity, this result shows

that the adiabatic limit can be approached arbitrarily closely if
(but not only if)

tf ≫ max

�
max
s∈½0;1�

kHð2ÞðsÞk
Δ2ðsÞ ; max

s∈½0;1�
kHð1ÞðsÞk2

Δ3ðsÞ ;

max
s∈½0;1�

kHð1ÞðsÞk
Δ2ðsÞ

�
: ð8Þ

Similar techniques based on Kato’s approach can be used to
prove a rigorous adiabatic theorem for open quantum systems,
where the evolution is generated by a non-Hermitian
Liouvillian instead of a Hamiltonian (Venuti et al., 2016).

2. Rigorous inverse gap squared

A version of the AT that yields a scaling of tf with the
inverse of the gap squared (up to a logarithmic correction) was9There is a weaker form of the AT, where one does not require a

nonvanishing gap (Avron and Elgart, 1999). In this case, as in
Theorem 2, the estimate on the error term is oð1Þ as tf → ∞. 10We use the notation HðkÞðsÞ≡ ð∂=∂xÞkHðxÞjs throughout.
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given by Elgart and Hagedorn (2012). All other rigorous
AT versions to date have a worse gap dependence (cubic
or higher). The proof introduces assumptions on HðsÞ
that go beyond those of Theorem 1. Namely, it is assumed
that HðsÞ is bounded and infinitely differentiable, and
the higher derivatives cannot have a magnitude that is too
large, or more specifically, that HðsÞ belongs to the Gevrey
class Gα.
Definition 2 (Gevrey class). HðsÞ ∈ Gα if dHðsÞ=ds ≠

0∀ s ∈ ½0; 1� and there exist constants C; R > 0, such that
for all k ≥ 1,

max
s∈½0;1�

kHðkÞðsÞk ≤ CRkkαk: ð9Þ

An example is HðsÞ ¼ ½1 − AðsÞ�H0 þ AðsÞH1, where
AðsÞ ¼ c

R
s
−∞ exp½−1=ðx − x2Þ�dx if s ∈ ð0; 1Þ, and AðsÞ ¼

0 if s∉½0; 1�. The constant c is chosen so that Að1Þ ¼ 1. For
this family kHðkÞðsÞk ¼ jAðkÞðsÞjkH1 −H0k ≤ Ck2k, so
that HðsÞ ∈ G2.
The AT due to Elgart and Hagedorn (2012) can now be

stated as follows.

Theorem 2. Assume that HðsÞ is bounded and belongs to
the Gevrey class Gα with α > 1, and that Δ ≪ h, where
h≡ kHð0Þk ¼ kHð1Þk. If

tf ≥
K
Δ2

j lnðΔ=hÞj6α ð10Þ

for some Δ-independent constant K > 0 (with units of
energy), then the distance kPtf ðsÞ − PðsÞk is oð1Þ∀ s ∈ ½0; 1�.
This result is remarkable in that it rigorously gives an

inverse gap squared dependence, which is essentially tight
due to the existence of a lower bound of the form tf ¼
OðΔ−2=j lnΔjÞ for Hamiltonians satisfying rankHð1Þ ≪
dimðHÞ (Cao and Elgart, 2012). However, the error bound
is not tight, and we address this next.

3. Arbitrarily small error

Building on work originating with Nenciu (1993) [see
also Hagedorn and Joye (2002)], Ge, Molnár, and Cirac
(2015) proved a version of the AT that results in an
exponentially small error bound in tf. The inverse gap
dependence is cubic.
Assume for simplicity that ε0ðsÞ ¼ 0 and choose the phase

of jε0ðsÞi so that h_ε0ðsÞjε0ðsÞi ¼ 0, where the dot denotes ∂s.

Theorem 3. Assume that all derivatives of the Hamiltonian
HðsÞ vanish at s ¼ 0, 1, and moreover that it satisfies the
following Gevrey condition: there exist constants C; R; α > 0

such that for all k ≥ 1,

max
s∈½0;1�

kHðkÞðsÞk ≤ CRk ðk!Þ1þα

ðkþ 1Þ2 : ð11Þ

Then the adiabatic error is bounded as

min
θ
kjψ tfð1Þi − eiθjε0ð1Þik ≤ c1

C
Δ
e−ðc2Δ3tf=C2Þ1=ð1þαÞ

; ð12Þ

where c1 ¼ eRð8π2=3Þ3 and c2 ¼ ð3=4π2Þ5=ð4eR2Þ.
Thus, as long as tf ≫ C2=Δ3, the adiabatic error is

exponentially small in tf.
The idea of using vanishing boundary derivatives dates

back at least to Garrido and Sancho (1962). It was also used
by Lidar, Rezakhani, and Hamma (2009) for a different
class of functions than the Gevrey class: functions that are
analytic in a strip of width 2γ in the complex time plane
and have a finite number V of vanishing boundary derivatives,
i.e., HðvÞð0Þ ¼ HðvÞð1Þ ¼ 0∀ v ∈ ½1; V�. The adiabatic error
is then upper bounded by ðV þ 1Þγþ1q−V as along as

tf ≥ ðq=γÞVmaxskHð1Þ
V ðsÞk2=Δ3, where q > 1 is a parameter

that can be optimized given knowledge of kHð1Þ
V k. Thus, the

adiabatic error can be made arbitrarily small in the number of
vanishing derivatives, while the scaling of tf with V is

encoded into kHð1Þ
V k.11 An example of a function whose first

V derivatives vanish at the boundaries s ¼ 0, 1 is the
regularized β function (Rezakhani, Pimachev, and Lidar,
2010)

AðsÞ ¼
R
s
0 x

Vð1 − xÞVdxR
1
0 x

Vð1 − xÞVdx .

It is possible to further reduce the error quadratically in tf
using an interference effect that arises from imposing an
additional boundary symmetry condition (Wiebe and
Babcock, 2012).
Note that an important difference between Theorems 2 and

3 is that the former applies for all times s ∈ ½0; 1� (“instanta-
neous AT”), while the latter applies only at the final time s ¼ 1

(“final-time AT”), which typically gives rise to tighter error
bounds.
Also note that Landau and Zener already showed that the

transition probability out of the ground state is Oðe−CΔ2tfÞ
(Landau, 1932; Zener, 1932) [see Joye (1994) for a rigorous
proof for analytic Hamiltonians], thus combining an
inverse gap square dependence with an exponentially small
error bound. However, this result holds only for two-level
systems.

4. Lower bound

Let HðsÞ with s ∈ ½0; 1� be a given continuous Hamiltonian
path and jεðsÞi the corresponding nondegenerate eigenstate
path (eigenpath). In the so-called black-box model the only
assumption is to be able to evolve with H½sðtÞ� for some
schedule sðtÞ (here s is allowed to be a general function of t),

11This corrects an omission by Lidar, Rezakhani, and Hamma
(2009), where the dependence of kHð1Þk on V was ignored since the
supremum of kHð1ÞðsÞk was taken over s ∈ ½0; 1� instead of over the
region of analyticity of HðsÞ, as noted by Ge, Molnár, and Cirac
(2015).
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without exploiting the unknown structure of HðsÞ. Define the
path length L as

L ¼
Z

1

0

kj_εðsÞikds; ð13Þ

where the dot denotes ∂s. Assuming, without loss of general-
ity, that the phase of jεðsÞi is chosen so that hεðsÞj_εðsÞi ¼ 0,
then L is the only natural length in projective Hilbert space (up
to irrelevant normalization factors).
It was shown by Boixo and Somma (2010) that there is a

lower bound on the time required to prepare jεð1Þi from jεð0Þi
with bounded precision

tf > OðL=ΔÞ: ð14Þ

Since an upper bound on L is maxsk _HðsÞk=Δ,12 one obtains
the estimate tf ∼O½maxsk _HðsÞk=Δ2�, reminiscent of the
approximate versions of the adiabatic condition [Eq. (5)].
The proof of the lower bound is essentially based on the
optimality of the Grover search algorithm.
The lower bound is nearly achievable using a “digital,”

nonadiabatic method proposed by Boixo, Knill, and Somma
(2010) that does not require path continuity or differenti-
ability. The time required scales as O½ðL=ΔÞ logðL=ϵÞ�,
where ϵ is a specified bound on the error of the output
state jεð1Þi. L is the angular length of the path and is
suitably defined to generalize Eq. (13) to the nondifferentiable
case.
Armed with an arsenal of adiabatic theorems we are now

well equipped to start surveying AQC algorithms.

III. ALGORITHMS

In this section we review the algorithms which are known to
provide quantum speedups over classical algorithms.
However, to make the idea of a quantum speedup precise
we need to draw distinctions among different types of
speedups, as several such types will arise in the course of
this review. Toward this end we adopt a classification
of quantum speedup types proposed by Rønnow et al.
(2014). The classification is the following, in decreasing
order of strength.

• A “provable” quantum speedup is the case where there
exists a proof that no classical algorithm can outperform
a given quantum algorithm. The best known example is
Grover’s search algorithm (Grover, 1997), which, in the
query complexity setting, exhibits a provable quadratic
speedup over the best possible classical algorithm
(Bennett et al., 1997).

• A “strong” quantum speedup was originally defined
by Papageorgiou and Traub (2013) by comparing a
quantum algorithm against the performance of the best
classical algorithm, whether such a classical algorithm
is explicitly known or not. This aims to capture com-
putational complexity considerations allowing for the

existence of yet-to-be discovered classical algorithms.
Unfortunately, the performance of the best possible
classical algorithm is unknown for many interesting
problems (for example, for factoring).

• A “quantum speedup” (unqualified, without adjectives)
is a speedup against the best available classical algorithm
[for example, Shor’s polynomial-time factoring algo-
rithm (Shor, 1994)]. Such a speedup may be tentative in
the sense that a better classical algorithm may eventually
be found.

• Finally, a “limited quantum speedup” is a speedup
obtained when compared specifically with classical
algorithms that “correspond” to the quantum algorithm
in the sense that they implement the same algorithmic
approach, but on classical hardware. This definition
allows for the existence of other classical algorithms
that are already better than the quantum algorithm. The
notion of a limited quantum speedup will turn out to be
particularly useful in the context of StoqAQC.

A refinement of this classification geared at experimental
quantum annealing was given by Mandrà et al. (2016).
Using this classification, this section collects most

of the adiabatic quantum algorithms known to give a
provable quantum speedup (Grover, Deutsch-Jozsa, Bernstein-
Vazirani, and glued trees), or just a quantum speedup
(PAGERANK).13

Many other adiabatic algorithms have been proposed, and
we review a large subset of these in Sec. VI. In a few of these
cases there is a scaling advantage over classical simulated
annealing, while in some cases there are definitely faster
classical algorithms.

A. Adiabatic Grover

The adiabatic Grover algorithm (Roland and Cerf, 2002) is
perhaps the hallmark example of a provable quantum speedup
using AQC, so we review it in detail. As in the circuit model
Grover algorithm (Grover, 1997), informally the objective is
to find the marked item (or possibly multiple marked items)
in an unsorted database of N items by accessing the database
as few times as possible. More formally, one is allowed
to call a function f∶ f0; 1gn ↦ f0; 1g (where N ¼ 2n

is the number of bit strings) with the promise that
fðmÞ ¼ 1 and fðxÞ ¼ 0∀ x ≠ m, and the goal is to find
the unknown index m in the smallest number of calls. This is
an oracular problem (Nielsen and Chuang, 2000), in that the
algorithm can make queries to an oracle that recognizes
the marked items. The oracle remains a black box, i.e., the
details of its implementation and its complexity are ignored.
This allows for an uncontroversial determination of the
complexity of the algorithm in terms of the number of
queries to the oracle.
For a classical algorithm, the only strategy is to query the

oracle until the marked item is found. Whether the classical
algorithm uses no memory, i.e., the algorithm does not keep

12See Appendix A.1 as well as Appendix G of Boixo, Knill, and
Somma (2009).

13The glued trees case is strictly not an adiabatic quantum
algorithm, since it explicitly makes use of excited states. Also, in
the PAGERANK case the evidence for a quantum speedup is numerical.
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track of items that have already been checked, or uses an
exponential amount of memory (in n) to store all the items that
have been checked, the classical algorithm will have an
average number of queries that scales linearly in N.
In the AQC algorithm we denote the marked item by the

binary representation of m. The oracle is defined in terms of
the final Hamiltonian H1 ¼ 1 − jmihmj, where jmi is the
marked state associated with the marked item. In this
representation, the binary representations give the eigenvalues
under σz, i.e., σzj0i ¼ þj0i and σzj1i ¼ −j1i. The marked
state is the ground state of this Hamiltonian with energy 0, and
all other computational basis states have energy 1.

1. Setup for the adiabatic quantum Grover algorithm

We use the initial Hamiltonian H0 ¼ 1 − jϕihϕj, where jϕi
is the uniform superposition state,

jϕi ¼ 1ffiffiffiffi
N

p
XN−1

i¼0

jii ¼ jþi⊗n; ð15Þ

where j�i ¼ ð1= ffiffiffi
2

p Þðj0i � j1iÞ. We take the time-dependent
Hamiltonian to be an interpolation:

HðsÞ ¼ ½1 − AðsÞ�H0 þ AðsÞH1

¼ ½1 − AðsÞ�ð1 − jϕihϕjÞ þ AðsÞð1 − jmihmjÞ; ð16Þ

where s ¼ t=tf ∈ ½0; 1� is the dimensionless time, tf is the
total computation time, and AðsÞ is a schedule that can be
optimized. For simplicity, we first consider a linear schedule
AðsÞ ¼ s. Note that H1 is n local.
If the initial state is initialized in the ground state of Hð0Þ,

i.e., jψð0Þi ¼ jϕi, then the evolution of the system is restricted
to a two-dimensional subspace, defined by the span of jmi and

jm⊥i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
XN−1

i≠m
jii.

In this two-dimensional subspace HðsÞ can be written as

½HðsÞ�jmi;jm⊥i ¼
1

2
12×2−

ΔðsÞ
2

�
cosθðsÞ sinθðsÞ
sinθðsÞ −cosθðsÞ

�
; ð17Þ

where

ΔðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2sÞ2 þ 4

N
sð1 − sÞ

r
; ð18aÞ

cos θðsÞ ¼ 1

ΔðsÞ
�
1 − 2ð1 − sÞ

�
1 −

1

N

��
; ð18bÞ

sin θðsÞ ¼ 2

ΔðsÞ ð1 − sÞ 1ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

N

r
: ð18cÞ

The eigenvalues and eigenvectors in this subspace are then
given by

ε0ðsÞ ¼ 1
2
½1 − ΔðsÞ�; ε1ðsÞ ¼ 1

2
½1þ ΔðsÞ�; ð19aÞ

jε0ðsÞi ¼ cos
θðsÞ
2

jmi þ sin
θðsÞ
2

jm⊥i; ð19bÞ

jε1ðsÞi ¼ − sin
θðsÞ
2

jmi þ cos
θðsÞ
2

jm⊥i: ð19cÞ

The remaining N − 2 eigenstates of HðsÞ have eigenvalue 1
throughout the evolution. The minimum gap occurs at s ¼
1=2 and scales exponentially with n:

Δmin ¼ Δðs ¼ 1=2Þ ¼ 1ffiffiffiffi
N

p ¼ 2−n=2: ð20Þ

(This can be viewed as a special case of Lemma 1.)
In our discussion of the adiabatic theorem we saw that

without special assumptions on sðtÞ except that it is twice
differentiable, the adiabatic condition is inferred from Eq. (7),
which requires setting

tf ≫ 2maxsk∂sHðsÞk=Δ2ðsÞ þ
Z

1

0

k∂sHðsÞk2=Δ3ðsÞds;

where we have accounted for the boundary conditions and
used the positivity of the integrand to extend the upper limit to
1.14 Differentiating Eq. (17) yields

∂sHðsÞ ¼

0
B@ −ð1 − 1

NÞ 1ffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

N

q
1ffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

N

q
1 − 1

N

1
CA; ð21Þ

which has eigenvalues � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=N

p
so that k∂sHk ≤ 1. The

other integrand in Eq. (7), involving k∂2
sHðsÞk=Δ2ðsÞ,

vanishes after differentiating Eq. (21). The ground state
degeneracy mðsÞ ¼ 1 throughout. Since

Z
s

0

1=Δ3ðxÞdx ¼ N
2
−

N3=2ð1 − 2sÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1 − 2sÞ2 þ 4ð1 − sÞs

p ;

which is a monotonically increasing function of s that appro-
aches N ¼ Δ−2

min as s → 1, the adiabatic condition becomes

tf ≫ 2max
s

1

Δ2ðsÞ þ
Z

1

0

ds
1

Δ3ðsÞ ¼
3

Δ2
min

: ð22Þ

This suggests the disappointing conclusion that the quantum
adiabatic algorithm scales in the same way as the classical
algorithm.
However, by imposing the adiabatic condition globally, i.e., to

the entire time interval tf, the evolution rate is constrained
throughout thewhole computation,while the gap becomes small
only around s ¼ 1=2. Thus, it makes sense to use a schedule
AðsÞ that adapts and slows down near the minimum gap, but
speeds up away from it (van Dam, Mosca, and Vazirani, 2001;

14Whenever we use the≫ symbol we mean that the larger quantity
should be larger by some large multiplicative constant, such as 100.
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Roland and Cerf, 2002) [this is related to the idea of rapid
adiabatic passage, which has a long history in nuclear magnetic
resonance (Powles, 1958)]. By doing so the quadratic quantum
speedup can be recovered as we address next.

2. Quadratic quantum speedup

Consider again the adiabatic condition (7), which we can
rewrite as

tf ≫ 2max
s

k∂sHðsÞk
Δ2ðsÞ þ

Z
1

0

�k∂2
sHk
Δ2

þ k∂sHk2
Δ3

�
ds; ð23Þ

where now H and Δ depend on a schedule AðsÞ. Let us now
use the ansatz (Roland and Cerf, 2002; Jansen, Ruskai, and
Seiler, 2007)

∂sA ¼ cΔp½AðsÞ�; Að0Þ ¼ 0; p; c > 0: ð24Þ

This schedule slows down as the gap becomes smaller as
desired. The normalization constant c¼R

1
0 Δ

−p½AðsÞ�∂sAds¼R Að1Þ
Að0Þ Δ

−pðuÞdu [using u ¼ AðsÞ] is chosen to ensure

that Að1Þ ¼ 1.
It follows that

Z
1

0

�k∂2
sH½AðsÞ�k
Δ2½AðsÞ� þ k∂sH½AðsÞ�k2

Δ3½AðsÞ�
�
ds

≤ 4c
Z

1

0

Δp−3ðuÞdu ð25Þ

(the proof is given in Appendix A.2). Finally, the boundary
term in Eq. (23) yields

2maxs
k∂sHðsÞk
Δ2ðsÞ ≤ 4cΔp−2

min .

The case p ¼ 2 serves to illustrate the main point. In this
case the boundary term is 4c and evaluating the integrals
yields

c ¼
Z

1

0

Δ−2ðuÞdu

¼ Nffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p tan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
→

π

2

ffiffiffiffi
N

p
;Z

1

0

Δ−1ðuÞdu

¼ log ½ ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p ffiffiffiffi
N

p þ N − 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p ffiffiffiffi
N

p
− ðN − 1Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − 1=N

p
→ logð2NÞ=2;

where the asymptotic expressions are for N ≫ 1. Substituting
this into Eq. (25) yields the adiabatic condition

tf ≫ 2π
ffiffiffiffi
N

p
½1þ logð2NÞ�; ð26Þ

which is a sufficient condition for the smallness of the
adiabatic error and nearly recovers the quadratic speedup
expected from Grover’s algorithm.

The appearance of the logarithmic factor latter is actually an
artifact of using bounds that are not tight.15 The quadratic
speedup, i.e., the scaling of tf with

ffiffiffiffi
N

p
, can be fully recovered

by solving for the schedule from Eq. (24) in the p ¼ 2 case
(Roland and Cerf, 2002). We first rewrite Eq. (24) in dimen-
sional time units as ∂tA ¼ c0Δ2½AðtÞ�, with the boundary
conditions Að0Þ ¼ 0 and AðtfÞ ¼ 1. To solve this differential
equation we rewrite it as

t ¼
Z

t

0

dt ¼
Z

AðtÞ

Að0Þ
dA=½c0Δ2ðAÞ�.

After integration we obtain

t ¼ N

2c0
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p ftan−1(
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
½2AðtÞ − 1�)þtan−1

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
g:

ð27Þ

Evaluating Eq. (27) at tf gives

tf ¼ N

c0
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p tan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
→

π

2c0
ffiffiffiffi
N

p
; ð28Þ

which is the expected quadratic quantum speedup.
One may be tempted to conclude that tf can be made

arbitrarily small since so far c0 is arbitrary and can be chosen
to be large. However, the adiabatic error bound (26) shows
that this is not the case: while it is not tight, it suggests that if tf
scales as

ffiffiffiffi
N

p
then c0 must scale as 1= logð2NÞ in order to keep

the adiabatic error small. Thus, the general conclusion is that
increasing c0 results in a larger adiabatic error.16

Inverting Eq. (27) for AðtÞ [or, equivalently, solving
Eq. (24) for p ¼ 2] gives the locally optimized schedule

AðsÞ ¼ 1

2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p tan ½ð2s − 1Þ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
�; ð29Þ

where we replaced t=tf [with tf given by Eq. (28)] with s. As
expected, this schedule rises rapidly near s ¼ 0, 1 and is
nearly flat around s ¼ 1=2, i.e., it slows down near the
minimum gap.
Since the choice in Eq. (24) is not unique, we wonder if

there exists a schedule that gives an even better scaling. Given
that Grover’s algorithm is known to be optimal in the circuit
model setting (Bennett et al., 1997; Zalka, 1999), this is, not
surprisingly, not the case, and a general argument to that effect
which applies to any Hamiltonian quantum computation was
given by Farhi and Gutmann (1998). We review this argument
in the AQC setting in Appendix B.

15A detailed analysis of the adiabatic Grover algorithm along with
tighter error bounds than given here was presented by Rezakhani,
Pimachev, and Lidar (2010).

16Note that the scaling conclusion tf ∼
ffiffiffiffi
N

p
reported by Roland

and Cerf (2002) is based on the interpretation of Eq. (24) as a
heuristic “local” adiabatic condition and does not constitute a proof
that the adiabatic error is small. The evidence that the rigorous bound
(26) is not tight and that tf ∼

ffiffiffiffi
N

p
suffices to achieve a small adiabatic

error for the schedule (29) is numerical.
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3. Multiple marked states

The present results generalize easily to the case where we
have M ≥ 1 marked states, for which Grover’s algorithm
is known to also give a quadratic speedup in the circuit
model (Boyer et al., 1998; Biham et al., 1999). The final
Hamiltonian can be written as

H1 ¼ 1 −
X
m∈M

jmihmj; ð30Þ

where M is the index set of the marked states. Let

jm⊥i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N −M
p

X
i∉M

jiihij: ð31Þ

Instead of evolving in a two-dimensional subspace, the
system evolves in an (M þ 1)-dimensional subspace spanned
by ðfjmigm∈M; jm⊥iÞ, and instead of Eq. (17), the
Hamiltonian can be written in this basis as

HðsÞ ¼

0
BBBBBB@

ð1 − sÞð1 − 1
NÞ − 1−s

N � � � −ð1 − sÞ
ffiffiffiffiffiffiffiffi
N−M

p
N

− 1−s
N ð1 − sÞð1 − 1

NÞ − 1−s
N � � � −ð1 − sÞ

ffiffiffiffiffiffiffiffi
N−M

p
N

..

. . .
. ..

.

−ð1 − sÞ
ffiffiffiffiffiffiffiffi
N−M

p
N −ð1 − sÞ

ffiffiffiffiffiffiffiffi
N−M

p
N � � � sþ ð1 − sÞð1 − N−M

N Þ

1
CCCCCCA
: ð32Þ

This Hamiltonian can be easily diagonalized, and one finds
that there are M − 1 eigenvalues equal to 1 − s, and two
eigenvalues

λ� ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2sÞ2 þ 4M

N
sð1 − sÞ

r
ð33Þ

that determine the relevant minimum gap

ΔðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2sÞ2 þ 4M

N
sð1 − sÞ

r
.

The remaining N −M − 1 eigenvalues of the unrestricted
Hamiltonian are equal to 1. Comparing the M ¼ 1 case
Eq. (18a) to the present case, the only difference is the
change from 1=N to M=N. Therefore our discussion from
earlier goes through with only this modification.
In closing, we note that an experimentally realizable version

of the adiabatic Grover search algorithm using a single
bosonic particle placed in an optical lattice was recently
proposed by Hen (2017).

B. Adiabatic Deutsch-Jozsa algorithm

Given a function f∶ f0; 1gn ↦ f0; 1gwhich is promised to
be either constant or balanced [i.e., fðxÞ ¼ 0 on half the inputs
and fðxÞ ¼ 1 on the other half], the Deutsch-Jozsa problem is
to determine which type the function is. There exists a
quantum circuit model algorithm that solves the problem in
a single f query (Deutsch and Jozsa, 1992). Classically, the
problem requires 2n−1 þ 1 f queries in the worst case, since it
is possible that the first 2n−1 queries return a constant answer,
while the function is actually balanced. It is important to note
that the quantum advantage requires a deterministic setting,
since the classical error probability is exponentially small in
the number of queries.
An adiabatic implementation of the Deutsch-Jozsa algo-

rithm using unitary interpolation was given by Sarandy and
Lidar (2005) and an implementation using a linear interpolation
was given byWei andYing (2006). These algorithmsmatch the

speedup obtained in the circuit model [for an earlier example
where this is not the case see Das, Kobes, and Kunstatter
(2002)], and we proceed to review both. We note that, just like
the adiabatic Grover’s algorithm, the adiabatic Deutsch-Jozsa
algorithm requiresn-localHamiltonians.We also note that both
the unitary interpolation and linear interpolation strategies are
not unique to the Deutsch-Jozsa problem and apply equally
well to any depth-one quantum circuit. Thus they should be
viewed in this more general context and are used here with a
specific algorithm for illustrative purposes.

1. Unitary interpolation

The initial Hamiltonian is chosen such that its ground state
is the uniform superposition state jϕi [Eq. (15)] and N ¼ 2n,
i.e.,Hð0Þ ¼ ω

P
n
i¼1 j−iih−j, where ω is the energy scale. The

Deutsch-Jozsa problem can be solved by a single computation
of the function f through the unitary transformation Ujxi ¼
ð−1ÞfðxÞjxi (x ∈ f0; 1gn) (Collins, Kim, and Holton, 1998), so
that in the fjxig (computational) basis U is represented by the
diagonal matrix U ¼ diag½ð−1Þfð0Þ;…; ð−1Þfð2n−1Þ�. An adia-
batic implementation requires a final Hamiltonian Hð1Þ such
that its ground state is jψð1Þi ¼ Ujψð0Þi. This can be
accomplished via a unitary transformation of Hð0Þ, i.e.,
Hð1Þ ¼ UHð0ÞU†. Then the final Hamiltonian encodes the
solution of the Deutsch problem in its ground state, which can
be extracted via a measurement of the qubits in the fjþi; j−ig
basis (note that this is compatible with the definition of
AQC, Definition 1, which does not restrict the measurement
basis). A suitable unitary interpolation between Hð0Þ and
Hð1Þ can be defined by HðsÞ ¼ ~UðsÞHð0Þ ~U†ðsÞ, where
~UðsÞ ¼ exp ½iðπ=2ÞsU�, for which ~Uð1Þ ¼ iU. Since a unitary
transformation of Hð0Þ preserves its spectrum, it does not
change the ground state gap which remains ω. The run time of
the algorithm can be determined from the adiabatic condition
(8), and what remains is the numerator

kHð1ÞðsÞk ¼
				i π2 ½U;HðsÞ�

				 ≤ πkHð0Þk ¼ π
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[and similarly for kHð2ÞðsÞk]. This yields tf ≫ 1=ω. This
result is independent of n so the adiabatic run time
is Oð1Þ.

2. Linear interpolation

Unitary interpolations, introduced by Siu (2005), are
somewhat less standard. Therefore we also present the
standard linear interpolation method as an alternative.
Consider the usual initial Hamiltonian H0 ¼ 1 − jϕihϕj
over n qubits, where once again jϕi is the uniform super-
position state. Let the final Hamiltonian beH1 ¼ 1 − jψifhψ j,
where

jψif ¼ μfffiffiffiffiffiffiffiffiffi
N=2

p XN=2−1

i¼0

j2ii þ 1 − μfffiffiffiffiffiffiffiffiffi
N=2

p XN=2−1

i¼0

j2iþ 1i; ð34Þ

and

μf ¼




1N

X
x∈f0;1gn

ð−1ÞfðxÞ




: ð35Þ

Clearly, μf ¼ 1 or 0 if f is constant or balanced, respectively.
Therefore jψif is a uniform superposition over all even or odd
index states if f is constant or balanced, respectively, and a
measurement of the ground state of H1 in the computational
basis reveals whether f is constant or balanced, depending on
whether the observed state belongs to the even or odd sector,
respectively. However, we note that one may object to the
reasonableness of the final Hamiltonian H1. Namely, prepar-
ing the state jψif involves precomputing the quantity μf,
which directly encodes whether f is constant or balanced and
so may be thought to represent an oracle that is too powerful.17

Indeed, H1 in this construction is not of the standard formP
x fðxÞjxihxj, where each oracle call fðxÞ corresponds to a

query about a single basis state jxi. Therefore, there is no
classical analog to this oracle in the computational basis.
Setting aside this concern in the present version of the

algorithm due to Wei and Ying (2006), it remains to deter-
mine the adiabatic run time for the adiabatic Hamiltonian
HðsÞ ¼ ð1 − sÞH0 þ sH1. The following Lemma (Aharonov
and Ta-Shma, 2003) comes in handy:
Lemma 1. Let jαi and jβi be two states in some sub-

space of an N-dimensional Hilbert space H, and let
Hα ¼ 1 − jαihαj, Hβ ¼ 1 − jβihβj. For any convex combina-
tion Hη ¼ ð1 − ηÞHα þ ηHβ, where η ∈ ½0; 1�, the ground
state gap ΔðHηÞ ≥ jhαjβij.
Proof. Expand jβi ¼ ajαi þ bjα⊥iwhere hαjα⊥i ¼ 0, and

complete fjαi; jα⊥ig to an orthonormal basis for H. Writing
Hη in this basis yields

Hη ¼
�
ηjbj2 ηab�

ηa�b ηjaj2 þ 1 − η

�
⊕ 1ðN−2Þ×ðN−2Þ: ð36Þ

The eigenvalues of this matrix are all 1 for the identity matrix
block and the difference between the eigenvalues in the 2 × 2

block is ΔðHηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ηð1 − ηÞjbj2

p
. This is minimized for

η ¼ 1=2, where it equals jaj. ▪
Applying this lemma, we see that Δ½HðsÞ� ≥ jhϕjψfij ¼

1=
ffiffiffi
2

p
. Since kHð1ÞðsÞk ¼ kH1 −H0k ≤ 2 and kHð2ÞðsÞk ¼ 0,

it follows from the adiabatic condition (8) that tf is indepen-
dent of n, i.e., the adiabatic run time is Oð1Þ as in the circuit
model depth.

3. Interpretation

As mentioned, a classical probabilistic algorithm that
simply submits random queries to the oracle will fail with
a probability that is exponentially small in the number of
queries. One might thus be concerned that the adiabatic
algorithms are no better (Hen, 2014a), since they are prob-
abilistic in the sense that there is a nonzero probability of
ending in an excited state. However, for the linear interpo-
lation adiabatic algorithm reviewed, measuring the energy of
the final state returns 0 in the ground state or 1 in an excited
state. In the latter “inconclusive” case, the algorithm needs to
be repeated until an energy of 0 is found and only then is a
computational basis measurement performed. If an even (or
odd) index state is measured, the corresponding constant (or
balanced) result is guaranteed to be correct. Moreover, an
excited state outcome can (and should) be made exponentially
unlikely using a smooth schedule as per Theorem 3. Thus, the
adiabatic algorithms improve upon a classical probabilistic
algorithm in the following sense: In the adiabatic case, to
know with certainty that the function is constant or balanced
(an even or odd index measurement result) happens with
probability p ¼ 1 − q where q ∼ e−tf , where the run time tf is
independent of n. Therefore, the expected number of runs r to
certainty in the adiabatic case is

hri ¼
X∞
r¼1

pqr−1r ¼ 1

1 − q
≈ 1þ q ∼ 1þ e−tf : ð37Þ

On the other hand, classically, to know with certainty that the
function is constant requiresN ¼ 2n=2þ 1 runs or queries (all
yielding identical outcomes).
Finally, we note that there exists a nonadiabatic

Hamiltonian quantum algorithm that solves the Deutsch-
Jozsa problem in constant time with a deterministic guarantee
of ending up with the right answer (i.e., in the ground state)
(Hen, 2014a). This algorithm is based on finding a fine-tuned
schedule sðtÞ.

C. Adiabatic Bernstein-Vazirani algorithm

The Bernstein and Vazirani (1993) problem is to find an
unknown binary string a ∈ f0; 1gn with as few queries as
possible of the function (or oracle)

faðwÞ ¼ w⊙a ∈ f0; 1g; ð38Þ

17The only efficient way known to compute a quantity similar to
μf involves running the Deutsch-Jozsa algorithm in the gate model,

where ð1=NÞPx∈f0;1gnð−1ÞfðxÞ, without the absolute value, appears
as the amplitude of the state j0i⊗n (Nielsen and Chuang, 2000).
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where ⊙ denotes the bitwise inner product modulo 2, and
w ∈ f0; 1gn as well. In the quantum circuit model, it can be
shown that a can be determined with Oð1Þ queries (Bernstein
and Vazirani, 1993) whereas classical algorithms require n
queries (the classical algorithm tries all n w’s with a single 1
entry to identify each bit of a). This is a polynomial quantum
speedup.
Before presenting the adiabatic algorithm we point out the

following useful observation. For an initial state

jΨð0Þi ¼
X

w∈f0;1gn
cwjwiA ⊗ jψwð0ÞiB;

X
w∈f0;1gn

jcwj2 ¼ 1

ð39Þ

that undergoes an evolution according to the time-dependent
Hamiltonian of the form

HðsÞ ¼
X

w∈f0;1gn
jwiAhwj ⊗ HwðsÞ; ð40Þ

we have

jΨðtÞi ¼
X

w∈f0;1gn
cwjwiA ⊗ jψwðtÞiB; ð41Þ

where

jψwðtÞiB ¼ jψ tf ;wðsÞiB
¼ Texp

�
−itf

Z
s

0

dσHwðσÞ
�
jψwð0ÞiB; ð42Þ

and Texp denotes the time-ordered exponential. To see this,
simply expand the formal solution:

jΨðtÞi¼Texp

�
−itf

Z
s

0

dσHðσÞ
�
jΨð0Þi

¼
X

w∈f0;1gn
cwjwiA ⊗Texp

�
−itf

Z
s

0

dσHwðσÞ
�
jψwð0ÞiB:

ð43Þ

Thus for each state jwi in subsystem A, there is an independ-
ently evolving state in subsystem B. In particular, note that
adiabaticity in subsystem B does not depend on the size of
system A.
The adiabatic algorithm (Hen, 2014b) encodes the action of

faðwÞ in a Hamiltonian acting on two subsystems A and B
comprising n qubits and 1 qubit, respectively,

H1 ¼
X

w∈f0;1gn
hw; ð44aÞ

hw ≡ −1
2
jwiAhwj ⊗ ½1B þ ð−1ÞfaðwÞσzB�: ð44bÞ

The initial Hamiltonian is chosen to be

H0 ¼
1

2
½1A ⊗ ð1B − σxBÞ�

¼ 1

2

X
w∈f0;1gn

jwiAhwj ⊗ ð1B − σxBÞ: ð45Þ

Any state of the form

jΨð0Þi ¼
X

w∈f0;1gn
cwjwiA ⊗ jþiB ð46Þ

is a ground state of H0, with eigenvalue 0. We assume that the
initial state is prepared as the uniform superposition state,
i.e., cw ¼ 2−n=2 ∀w.
The total Hamiltonian is thus given by

HðsÞ ¼ ð1 − sÞH0 þ sH1 ¼
X

w∈f0;1gn
jwiAhwj ⊗ HwðsÞ; ð47Þ

where

HwðsÞ ¼
1 − s
2

ð1B − σxBÞ −
s
2
½1B þ ð−1ÞfaðwÞσzB�: ð48Þ

The adiabatic algorithm proceeds, after preparation of the
initial state, by adiabatic evolution to the final state

jΨðtfÞi

¼ 1

2n=2

X
w∈f0;1gn

jwiA ⊗ exp

�
−itf

Z
1

0

ε0;wðsÞds
�
jfaðwÞiB;

ð49Þ

where ε0;wðsÞ is the instantaneous ground state energy of
HwðsÞ, and we used the general argument from Eqs. (39)–
(42). Finally an x measurement on subsystem B is performed.
Since we can write

jfaðwÞi ¼
1ffiffiffi
2

p ½jþi þ ð−1ÞfaðwÞj−i�; ð50Þ

the state collapses to either of the following states with equal
probability:

jΨþi ¼
1

2n=2

X
w∈f0;1gn

jwiA ⊗ jþiB ¼ jΨð0Þi; ð51aÞ

jΨ−i ¼
1

2n=2

X
w∈f0;1gn

jwiA ⊗ ð−1ÞfaðwÞj−iB: ð51bÞ

Note that since faðwÞ counts the number of 1 agreements
between a and w, we can write

X
w∈f0;1gn

ð−1ÞfaðwÞjwiA ¼ ⊗
n−1

k¼0
½j0ik þ ð−1Þak j1ik�A; ð52Þ

so that

Tameem Albash and Daniel A. Lidar: Adiabatic quantum computation

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015002-13



jΨ−i ¼
1

2n=2
⊗
n−1

k¼0
½j0ik þ ð−1Þak j1ik�A ⊗ j−iB: ð53Þ

If the measurement gives þ1 [i.e., Eq. (51a)], then the
measured state is the initial state and no information is gained
and the process must be repeated. If the measurement gives
−1, then the resulting state in the A subspace encodes all the
bits of a, since if the kth qubit is in the jþik state, then ak ¼ 0
and if it is in the j−ik state, then ak ¼ 1. The probability of
failure after m tries is 2−m so it is exponentially small and
n independent.
The run time of the algorithm is also n independent, since

only a single qubit (system B) is effectively evolving.
In conclusion, the adiabatic Bernstein-Vazirani algorithm

finds the unknown binary string a in Oð1Þ time, matching the
circuit model depth. Using a similar technique, Hen (2014b)
presented a quantum adiabatic version of Simon’s exponen-
tial-speedup period finding algorithm (Simon, 1997) [a
precursor to Shor’s factoring algorithm (Shor, 1997)], again
matching the circuit model depth scaling. An important aspect
of these quantum adiabatic constructions is that they go
beyond the general-purpose (and hence suboptimal) polyno-
mial-equivalence prescription of universality proofs that map
circuit-based algorithms into quantum adiabatic ones (see
Sec. IV). That equivalence does not necessarily preserve a
polynomial quantum speedup, whereas the construction in
Hen (2014b) discussed here does.

D. The glued-trees problem

Consider two binary trees, each of depth n. Each tree hasP
n
j¼0 2

j ¼ 2nþ1 − 1 vertices, for a total of N ¼ 2nþ2 − 2

vertices, each labeled by a randomly chosen 2n-bit string.
The two trees are randomly glued as shown in Fig. 1. More
specifically, choose a leaf on the left end at random and
connect it to a leaf on the right end chosen at random. Then
connect the latter to a leaf on the left chosen randomly among
the remaining ones, and so on, until every leaf on the left is
connected to two leaves on the right and vice versa. This
creates a random cycle that alternates between the leaves of
the two trees. The problem is, starting from the left root, to
find a path to the right root in the smallest possible number of

steps, while traversing the tree as in a maze, i.e., keeping a
record of one’s moves is allowed, but at any given vertex one
can only see the adjacent vertices. More formally, an oracle
outputs the adjacent vertices of a given input vertex (note that
the roots of the trees are the only vertices with adjacency two,
so it is easy to check if the right root was found). The problem
is, given the name of the left root and access to the oracle, to
find the name of the right root in the smallest number of
queries. Classical algorithms require at least a subexponential
in n number of oracle calls, but there exists a polynomial-time
quantum algorithm based on quantum walks for solving this
problem (Childs et al., 2003). A polynomial-time quantum
almost-adiabatic algorithm was given by Somma, Nagaj, and
Kieferová (2012). The qualifier “almost” is important: the
algorithm is not adiabatic during the entire evolution, since it
explicitly requires a transition from the ground state to the first
excited state and back. We now review the algorithm, which so
far provides the only example of a (sub)exponential almost-
adiabatic quantum speedup.
Let us denote the bit-string corresponding to the first root

by a0 and the second root by aN−1. Define the diagonal (in the
computational basis) Hamiltonians

H0 ¼ −ja0iha0j; H1 ¼ −jaN−1ihaN−1j; ð54Þ

and the states

jcji ¼
1ffiffiffiffiffiffi
Nj

p X
i∈jth column

jaii; ð55Þ

which are a uniform superposition over the vertices in the jth
column with Nj ¼ 2j for 0 ≤ j ≤ n and Nj ¼ 22nþ1−j for
nþ 1 ≤ j ≤ 2nþ 1. Note that jc0i ¼ ja0i and jc2nþ1i ¼
jaN−1i. Let us define the Hamiltonian A associated with
the oracle as having the following nonzero matrix elements:

hcjjAjcjþ1i ¼
� ffiffiffi

2
p

j ¼ n;

1 otherwise:
ð56Þ

We then pick as our interpolating Hamiltonian

HðsÞ ¼ ð1 − sÞαH0 − sð1 − sÞAþ sαH1; ð57Þ

where α ∈ ð0; 1=2Þ is a constant (independent of n) and sðtÞ is
the schedule. Note that a unitary evolution according to this
Hamiltonian will keep a state within the subspace spanned by
fjcjig if the state is initially within that subspace. Since the
instantaneous ground state at s ¼ 0 (ja0i) is in this subspace, it
suffices to consider only this subspace. Because of the form of
the Hamiltonian, the eigenvalue spectrum is symmetric
about s ¼ 1=2.
In this subspace, at s× ¼ α=

ffiffiffi
2

p
(and by symmetry at

1 − s×), the energy gap between the ground state and the
first excited state closes exponentially in n. This is depicted in
Fig. 2, where s1, s2 represent the region around s× and s3, s4
represent the region around 1 − s×. In the regions s ∈ ½0; s1Þ,

FIG. 1. A glued tree with n ¼ 4. The labeling j from Eq. (55) is
depicted on top of the tree.
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s ∈ ½s2; s3Þ, and s ∈ ½s4; 1�, the energy gap between the
ground state and first excited state is lower bounded by
c=n3. The gap between the first and second excited states is
lower bounded by c0=n3 throughout the evolution. Both
c; c0 > 0.
The proposed evolution exploits the symmetry and gap

structure of the spectrum as follows. A schedule is chosen that
guarantees adiabaticity only if the energy gap scales as 1=n3.
Then during s ∈ ½0; s1Þ, the desired evolution is sufficiently
adiabatic that it follows the instantaneous ground state. During
s ∈ ½s1; s2Þ, the evolution is nonadiabatic (since the gap scales
as 1=en) and a transition to the first excited state occurs with
high probability. During s ∈ ½s2; s3Þ, the evolution is again
sufficiently adiabatic that it follows the instantaneous first
excited state. During s ∈ ½s3; s4Þ, the evolution is again
nonadiabatic and a transition from the first excited state back
to the ground state occurs with high probability. During
s ∈ ½s4; 1�, the evolution is again adiabatic and follows the
instantaneous ground state.
Since tf ¼ R

1
0 dsðds=dtÞ−1 ∼ n6, we conclude that jaN−1i

can be found in polynomial time.

E. Adiabatic PAGERANK algorithm

We review the adiabatic quantum algorithm from
Garnerone, Zanardi, and Lidar (2012) that prepares a state
containing the same ranking information as the PAGERANK

vector. The latter is a central tool in data mining and
information retrieval at the heart of the Google search engine
(Brin and Page, 1998). Using the adiabatic algorithm, the
extraction of the full PAGERANK vector cannot, in general, be

done more efficiently than when using the best classical
algorithms known. However, there are particular graph topol-
ogies and specific tasks of relevance in the use of search
engines (such as finding just the top-ranked entries) for which
the quantum algorithm, combined with other known quantum
protocols, may provide a polynomial or even exponential
quantum speedup. Note that unlike the previous algorithms we
reviewed in this section, which all provided a provable
quantum speedup, the current algorithm provides a “regular”
quantum speedup in the sense that it outperforms all currently
known classical algorithms, but better future classical algo-
rithms have not been ruled out.

1. Google matrix and PAGERANK

PAGERANK can be seen as the stationary distribution of a
random walker on the web graph, which spends its time on
each page in proportion to the relative importance of that page
(Langville and Meyer, 2006).
To model this define the transition matrix P1 associated

with the (directed) adjacency matrix A of the graph

P1ði; jÞ ¼
�
1=dðiÞ if ði; jÞ is an edge of A;

0 else;
ð58Þ

where dðiÞ is the out degree of the ith node.
The rows having zero matrix elements, corresponding to

dangling nodes, are replaced by the vector e⃗=n whose entries
are all 1=n, where n is the number of pages or nodes, i.e., the
size of the web graph. Call the resulting (right) stochastic
matrix P2. However, there could still be subgraphs with in
links but no out links. Thus one defines the Google matrix G
as

G ≔ αPT
2 þ ð1 − αÞE; ð59Þ

where E≡ jv⃗ihe⃗j. The personalization vector v⃗ is a proba-
bility distribution; the typical choice is v⃗ ¼ e⃗=n. The param-
eter α ∈ ð0; 1Þ is the probability that the walker follows the
link structure of the web graph at each step, rather than hop
randomly between graph nodes according to v⃗ (Google
reportedly uses α ¼ 0.85). By construction, G is irreducible
and aperiodic, and hence the Perron-Frobenius theorem (Horn
and Johnson, 2012)18 ensures the existence of a unique
eigenvector with all positive entries associated to the maximal
eigenvalue 1. This eigenvector is precisely the PAGERANK p⃗.
Moreover, the modulus of the second eigenvalue of G is upper
bounded by α (Nussbaum, 2003). This is important for the
convergence of the power method, the standard computational
technique employed to evaluate p⃗. It uses the fact that, for any
probability vector p⃗0,

p⃗ ¼ lim
k→∞

Gkp⃗0: ð60Þ

FIG. 2. The ground state [λ0ðsÞ, solid blue curve], first excited
state [λ1ðsÞ, dashed red curve], and second excited state [λ2ðsÞ
dot-dashed yellow curve] of the glued-trees Hamiltonian (57) for
α ¼ 1=

ffiffiffi
8

p
and n ¼ 6. Inside the region ½s1; s2� and ½s3; s4�, the

gap between the ground state and first excited state Δ10 closes
exponentially with n. In the region ½s2; s3�, the gap between the
ground state and first excited state Δ10 and the gap between the
first excited state and second excited state Δ21 are bounded by
n−3. Similarly, in the region ½s4; 1�, the gap between the ground
state and first excited state Δ10 is bounded by n−3.

18This theorem states that if all elements of a real symmetric
square matrix A are non-negative, then the largest eigenvalue of A is
real; furthermore, the components of the corresponding eigenvector
can be chosen to be all non-negative.
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The power method computes p⃗ with accuracy ν in a time that
scales as O½sn logð1=νÞ= logð1=αÞ�, where s is the sparsity of
the graph (maximum number of nonzero entries per row of the
adjacency matrix). The rate of convergence is determined
by α.

2. Hamiltonian and gap

Consider the following nonlocal final Hamiltonian asso-
ciated with a generic Google matrix G (in this section we use
H and h for local and nonlocal Hamiltonians, respectively):

h1 ¼ hðGÞ≡ ð1 − GÞ†ð1 − GÞ: ð61Þ
Since hðGÞ is positive semidefinite, and 1 is the maximal
eigenvalue of G associated with p⃗, it follows that the ground
state of hðGÞ is given by jπi≡ p⃗=kp⃗k. The initial
Hamiltonian has a similar form, but it is associated with
the Google matrix Gc of the complete graph

h0 ¼ hðGcÞ≡ ð1 − GcÞ†ð1 −GcÞ: ð62Þ
The ground state of h0 is the uniform superposition state
jψð0Þi ¼ P

n
j¼1 jji=

ffiffiffi
n

p
. The basis vectors jji span the n-

dimensional Hilbert space of log2 n qubits. The interpolating
adiabatic Hamiltonian is

hðsÞ ¼ ð1 − sÞh0 þ sh1: ð63Þ
Equations (61)–(63) completely characterize the adiabatic
quantum PAGERANK algorithm, apart from the schedule sðtÞ.
By numerically simulating the dynamics generated by hðsÞ,

Garnerone, Zanardi, and Lidar (2012) showed that for typical
random graph instances generated using the “preferential
attachment model” (Barabasi and Albert, 1999; Bollobás
et al., 2001) and “copying model” (Kleinberg et al., 1999)
(both of which yield sparse random graphs with small-world
and scale-free features) the typical run time of the adiabatic
quantum PAGERANK algorithm scales as

tf ∼ ðlog log nÞb−1ðlog nÞb; ð64Þ
where b > 0 is some small integer that depends on the details
of the graph parameters. The numerically computed gap scales
as ðlog nÞ−b, which Garnerone, Zanardi, and Lidar (2012)
found to be due to the power-law distribution of the out-degree
nodes dðiÞ.19

3. Speedup

We next discuss two tasks for which this adiabatic quantum
ranking algorithm offers a speedup.
The best currently known classical Markov chain

Monte Carlo technique used to evaluate the full PAGERANK

vector requires a time [in the bulk synchronous parallel
computational model (Valiant, 1990)] which scales as

O½logðnÞ� (Das Sarma et al., 2015). The algorithm launches
log n random walks from each node of the graph in parallel
[for a total of n logðnÞ walkers], with each node communicat-
ing O½logðnÞ� bits of data to each of its connected neighbors
after each step. After O½logðnÞ� steps, the total number of
walkers that have visited a node is used to estimate the
PAGERANK of that node. In the absence of synchronization
costs [synchronization and communication are known to be
important issues for networks with a large number of
processors (Awerbuch, 1985; Kumar et al., 2003; Bisseling,
2004; Rauber and Rünger, 2010)], the classical cost can be
taken to be O½n logðnÞ2�, i.e., the number of parallel processes
multiplied by the duration of each process.20

At the conclusion of the adiabatic evolution generated by
the Hamiltonian in Eq. (63), the PAGERANK vector p⃗ ¼ fpig is
encoded into the quantum PAGERANK state jπi ¼ P

n
i¼1

ffiffiffiffi
πi

p jii
of a ðlog2 nÞ-qubit system, where jii denotes the ith node in
the graph G. The probability of measuring node i is
πi ¼ p2

i =kp⃗k2. One can estimate πi by repeatedly sampling
the expectation value of the operator σzi in the final state. The
number of measurements M needed to estimate πi is given by
the Chernoff-Hoeffding bound (Hoeffding, 1963), allowing
one to approximate πi with an additive error ei and with
M ¼ polyðe−1i Þ. A nontrivial approximation requires ei ≤ pi

and these are typically Oð1=nÞ.
The fact that the amplitudes of the quantum PAGERANK state

are f ffiffiffiffi
πi

p ¼ pi=kp⃗kg, rather than f ffiffiffiffiffi
pi

p g is a virtue: the
number of samples needed to estimate the rank πi with
additive error ei ∼ πi scales as O½n2γi−1�, so the total
quantum cost is O½n2γi−1polylogðnÞ�.21 Thus, for the com-
bined task of state preparation and rank estimation there is a
polynomial quantum speedup whenever γi < 1, namely,
O½n2γi−1polylogðnÞ� vs O½npolylogðnÞ�; simulations reported
by Garnerone, Zanardi, and Lidar (2012) show that this is
indeed the case for the top-ranked logðnÞ entries, and in
applications one is most often interested in the top entries. We
emphasize that this holds in the average (not worst) case and is
not a provable speedup; the evidence for the scaling is
numerical, and it is unknown whether a classical algorithm
for the preparation of π rather than p⃗ may give a similar
scaling to the quantum scaling, although if that is the case one
could consider quantum preparation of fπ2i =kπk2g, etc.
Another context for useful applications is comparing

successive PAGERANKs, or more generally “q sampling”
(Aharonov and Ta-Shma, 2003). Suppose one perturbs the

19The gap becomes too small for a quantum advantage, i.e., scales
as 1=polyðnÞ, for graphs with only in-degree power-law distribution
or when the out degrees are equal to the in degrees. This was studied
in more detail by Frees et al. (2013).

20This analysis improves upon the estimates of the classical cost
presented by Garnerone, Zanardi, and Lidar (2012) and accounts for
the critique presented by Moussa (2013).

21It was observed numerically by Garnerone, Zanardi, and Lidar
(2012) that pi ∝ 1=nγi , where γi ∈ ð0.6; 1�, and that kp⃗k22 ∝ 1=n. Let
ei denote the additive error corresponding to πi ¼ p2

i =kp⃗k22 ∼ np2
i . It

follows from the Chernoff-Hoeffding inequality that the number of
samplesMðxÞ from the distribution x, where x ¼ π ¼ fπig (output of
the quantum algorithm), required for a given, fixed additive estima-
tion error is proportional to the inverse of the additive error
MðπÞ ∼ 1=ei. Assuming ei ∼ πi, it follows that MðπÞ ∼ 1=πi∼
1=ðnp2

i Þ ∼ n2γi−1. The total cost required to prepare the sample in
the quantum case is O½polylogðnÞ�.
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web graph. The adiabatic quantum algorithm can provide, in
time O½polylogðnÞ�, the pre- and postperturbation states jπi
and j ~πi as input to a quantum circuit implementing the SWAP

test (Buhrman et al., 2001). To obtain an estimate of the
fidelity jhπj ~πij2 one needs to measure an ancilla Oð1Þ times,
the number depending only on the desired precision. In
contrast, deciding whether two probability distributions are
close classically requires O½n2=3 log n� samples from each
(Batu et al., 2000). Whenever some relevant perturbation of
the previous quantum PAGERANK state is observed, one can
decide to run the classical algorithm again to update the
classical PAGERANK.

IV. UNIVERSALITY OF AQC

What is the relation between the computational power of
the circuit model and the adiabatic model of quantum
computing? It turns out that they are equivalent up to
polynomial overhead. It is well known that the circuit model
is universal for quantum computing, i.e., that there exist sets of
gates acting on a constant number of qubits each that can
efficiently simulate a quantum Turing machine (Deutsch,
1985; Yao, 1993). A set of gates is said to be universal for
QC if any unitary operation may be approximated to arbitrary
accuracy by a quantum circuit involving only those gates
(Nielsen and Chuang, 2000). The analog of such a set of gates
in AQC is a Hamiltonian. An operational definition of
universal AQC is thus to efficiently map any circuit to an
adiabatic computation using a sufficiently powerful
Hamiltonian. Formally:

Definition 3 (universal adiabatic quantum computation). A
time-dependent Hamiltonian HðtÞ, t ∈ ½0; tf� is universal for
AQC if, given an arbitrary quantum circuit U operating on an
arbitrary initial state jψi of n p-state particles and having
depth L, the ground state of HðtfÞ is equal to Ujψi with
probability greater than ϵ > 0, the number of particles HðtÞ
operates on is polyðnÞ∀ t, and tf ¼ polyðn; LÞ.
The stipulation that the ground state of HðtfÞ is equal to the

final state at the end of the circuit ensures that the circuit and
the adiabatic computation have the same output. We note that
it is possible and useful to relax the ground state requirement
and replace it with another eigenstate of HðtÞ (see, e.g.,
Sec. VI.C). The requirement that the number of particles and
time taken by the adiabatic computation are polynomial in n
and L ensures that the resources used do not blow up.
We begin, in Sec. IV.A, by showing that the circuit model

can efficiently simulate AQC. The real challenge is to show
the other direction, i.e., that AQC can efficiently simulate the
circuit model, which is what we devote the rest of this section
to. Along the way, this establishes the universality of AQC.
We present several proofs starting in Sec. IV.B with a detailed
review of the history state construction of Aharonov et al.
(2007), who showed in addition that six-state particles in two
dimensions suffice for universal adiabatic quantum compu-
tation. This was improved upon by Kempe, Kitaev, and Regev
(2006), using perturbation-theory gadgets, who showed that
qubits can be used instead of six-state particles, and that
adiabatic evolution with 2-local Hamiltonians is quantum
universal. A 2-local model of universal AQC in 2D, which we

reviewed in Sec. IV.C, was proposed by Mizel, Lidar, and
Mitchell (2007) using fermions. Universal AQC using qubits
on a two-dimensional grid was accomplished by Oliveira and
Terhal (2008). Further simplifications of universal AQC in 2D
were presented by Breuckmann and Terhal (2014), Gosset,
Terhal, and Vershynina (2015), and Lloyd and Terhal (2016),
using the space-time circuit model, which we review in
Sec. IV.D. The ultimate reduction in spatial dimensionality
was accomplished by Aharonov et al. (2009), who showed
that universal AQC is possible with 1D nine-state particles as
reviewed in Sec. IV.E. Finally, in Sec. IV.F we review a
construction that allows one to quadratically amplify the gap
of any Hamiltonian used in AQC (satisfying a frustration-
freeness property), although this requires the computation to
take place in an excited state.

A. The circuit model can efficiently simulate AQC

That the circuit model can efficiently simulate the adiabatic
model is relatively straightforward and was first shown by
Farhi et al. (2000). Assume for simplicity a linear schedule,
i.e., an AQC Hamiltonian of the form

HðtÞ ¼
�
1 −

t
tf

�
H0 þ

t
tf
H1.

The evolution of a quantum system generated by the time-
dependent Hamiltonian HðtÞ is governed by the unitary
operator

Uðtf; 0Þ ¼ Texp

�
−i

Z
tf

0

dtHðtÞ
�
: ð65Þ

If tf satisfies the condition for adiabaticity, Uðtf; 0Þ will map
the ground state at t ¼ 0 to the ground state at tf. Therefore it
suffices to show that the circuit model can simulateUðtf; 0Þ. To
do so, we approximate the evolution by a product of unitaries
involving time-independent Hamiltonians H0

m ≡HðmΔtÞ:

Uðtf; 0Þ ↦ U0ðtf; 0Þ ¼
YM
m¼1

U0
m ¼

YM
m¼1

e−iΔtH
0
m; ð66Þ

whereΔt ¼ tf=M. The error incurred by this approximation is
(van Dam, Mosca, and Vazirani, 2001)

kUðtf; 0Þ −U0ðtf; 0Þk ∈ O
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tfpolyðnÞ=M
q i

. ð67Þ

We now approximate each individual term in the product
in Eq. (66) using the Baker-Campbell-Hausdorff formula
(Klarsfeld and Oteo, 1989) by

U0
m ↦ U00

m ¼ e−iΔtð1−mΔt=tfÞH0e−iΔtðmΔt=tfÞH1 ; ð68Þ

which incurs an error keAþB − eAeBk ∈ OðkABkÞ due to the
neglected leading order commutator term ½A; B�=2, i.e.,

kU0
m − U00

mk ∈ O

�
t2f
M2

kH0H1k
�
: ð69Þ
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Therefore, accounting for the M terms in the product and
observing that the error in Eq. (67) is subdominant, the total
error is (van Dam, Mosca, and Vazirani, 2001)

				Uðtf; 0Þ −
YM
m¼1

U00
m

				 ∈ O½polyðnÞt2f=M�: ð70Þ

This means we can approximateUðtf; 0Þwith a product of 2M
unitaries provided that M scales as t2fpolyðnÞ.
Depending on the form of H0 and H1, they may need

further decomposition in order to write the terms in Eq. (68) in
terms of few-qubit unitaries. For example, for the standard
initial Hamiltonian H0 ¼ −

P
i σ

x
i , which is a sum of com-

muting single-qubit operators, we can write e−iΔtð1−t=tfÞH0=K as
a product of n one-qubit unitaries. Likewise, assuming thatH1

is 2-local, we can write e−iðmΔt=tfÞΔtH1=M as a product of up to
n2 two-qubit unitaries within the same order of approximation
as Eq. (68). Thus, Uðtf; 0Þ can be approximated as a product
of unitary operators each of which acts on a few qubits. The
scaling of tf required for adiabatic evolution is inherited by the
number of few-qubit unitary operators in the associated circuit
version of the algorithm.
A more efficient method was proposed by Boixo, Knill, and

Somma (2009), building upon the ideas explained in
Sec. II.B.4. This “eigenpath traversal by phase randomization”
method applies the Hamiltonian HðtjÞ in piecewise continu-
ous manner at random times tj. Each interval ½tj; tjþ1�
corresponds to a unitary e−iHðtjÞ, which then needs to be
decomposed into one- and two-qubit gates. The randomiza-
tion introduces an effective eigenstate decoupling in the
Hamiltonian eigenbasis (similarly to the effect achieved by
projections in the Zeno effect), so that if the initial state is the
ground state, the evolution will follow the ground state
throughout as required for AQC. The algorithmic cost of this
randomization method is defined as the average number of
times the unitaries are applied, and it can be shown that the
cost isOðL2=εΔÞ, where ε is the desired maximum error of the
final state compared to the target eigenstate, and L is the path
length [Eq. (13)]. Since L ≤ maxsk _HðsÞk=Δ as seen in
Sec. II.B.4, the worst-case bound on the cost is
maxsk _HðsÞk2=ðεΔ3Þ, up to logarithmic factors.

B. AQC can efficiently simulate the circuit model: History state
proof

The goal is, given an arbitrary n-qubit quantum circuit,
to design an adiabatic computation whose final ground
state is the output of the quantum circuit described by a
sequence of L one- or two-qubit unitary gates U1; U2;…; UL.
This adiabatic simulation of the circuit should be efficient, i.e.,
it may incur at most polynomial overhead in the circuit depth
L. In this section we review the proof presented by Aharonov
et al. (2007). This was the first complete proof of the
universality of AQC, and many of the ideas and techniques
introduced therein inspired subsequent proofs, remaining
relevant today.
Let us assume that the n-qubit input to the circuit is the

j0 � � � 0i state. After the lth gate, the state of the quantum

circuit is given by jαðlÞi. To proceed, we use the “circuit-to-
Hamiltonian” construction (Kitaev, Shen, and Vyalyi, 2000),
where the final Hamiltonian will have as its ground state the
entire history of the quantum computation. This “history
state” is given by

jηi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
XL
l¼0

jγðlÞi; ð71aÞ

jγðlÞi≡ jαðlÞi ⊗ j1l0L−lic; ð71bÞ

where j1l0L−lic denotes the Feynman clock (Feynman, 1985)
register composed of Lþ 1 qubits. The notation means that
we have l ones followed by L − l zeros to denote the time
after the lth gate. We want to construct a Hamiltonian Hinit
with ground state jγð0Þi and a Hamiltonian Hfinal with ground
state jηi. Let

Hinit ¼ Hc-init þHinput þHc; ð72aÞ

Hfinal ¼ 1
2
Hcircuit þHinput þHc; ð72bÞ

Hcircuit ¼
XL
l¼1

Hl: ð72cÞ

The full time-independent Hamiltonian HðsÞ is given by
(Aharonov et al., 2007)

HðsÞ ¼ ð1 − sÞHinit þ sHfinal

¼ Hinput þHc þ ð1 − sÞHc-init þ
s
2
Hcircuit: ð73Þ

The various terms are chosen so that the ground state always
has energy 0:

• Hc: This term should ensure that the clock’s state is
always of the form j1l0L−lic. Therefore, we energeti-
cally penalize any clock-basis state that has the sequence
01:

Hc ¼
XL−1
l¼1

j0l1lþ1ich0l1lþ1j; ð74Þ

where j0l1lþ1ic denotes a 0 on the lth clock qubit and 1
on the ðlþ 1Þth clock qubit. Any illegal clock state will
have an energy ≥ 1. Any legal clock state will have
energy 0.

• Hc-init: Ensures that the initial clock state is j0Lic,

Hc-init ¼ j11ich11j. ð75Þ

Note that we need to specify only the first clock qubit to
be in the zero state. For a legal clock state, Eqs. (74) and
(75) imply that the rest are in the zero state as well.
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• Hinput: Ensures that if the clock state is j0Li, then the
computation qubits are in the j0ni state,

Hinput ¼
Xn
i¼1

j1iih1ij ⊗ j01ich01j. ð76Þ

• Hl: Ensures that the propagation from l − 1 to l
corresponds to the application of Ul,

H1 ¼ 1 ⊗ j0102ich0102j − U1j1102ich0102j
−U†

1j0102ich1102j þ 1 ⊗ j1102ich1102j; ð77aÞ

H2≤l≤L−1 ¼ 1 ⊗ j1l−10l0lþ1ich1l−10l0lþ1j
− Ulj1l−11l0lþ1ich1l−10l0lþ1j
− U†

lj1l−10l0lþ1ich1l−11l0lþ1j
þ 1 ⊗ j1l−11l0lþ1ich1l−11l0lþ1j; ð77bÞ
HL ¼ 1 ⊗ j1L−10Lich1L−10Lj

− ULj1L−11Lich1L−10Lj
− U†

1j1L−10Lih1L−11Lj
þ 1 ⊗ j1L−11Lich1L−11Lj. ð77cÞ

Note that the first and last terms leave the state
unchanged. The second term propagates the computa-
tional state and clock register forward, while the third
term propagates the computational state and clock
register backward.

It turns out that the state jγð0Þi ¼ jαð0Þi ⊗ j0Li is the
ground state of Hinit with eigenvalue 0, and jηi is the ground
state of Hfinal with eigenvalue 0. Let S0 be the subspace
spanned by fjγðlÞigLl¼0. The state jαð0Þi is the input to the
circuit, so it can be taken to be the j0 � � � 0i state, i.e., the initial
ground state is an easily prepared state. Since the initial state
jγð0Þi ∈ S0, the dynamics generated byHðsÞ keep the state in
S0. It turns out that the ground state is unique for s ∈ ½0; 1�. By
mapping the Hamiltonian within S0 to a stochastic matrix, it is
possible to find a polynomial lower bound on the gap from the
ground state within S0:

ΔðHS0
Þ ≥ 1

4

�
1

6L

�
2

: ð78Þ

It is also possible to bound the global gap (i.e., not restricted
to the S0 subspace) as

ΔðHÞ ≥ Ωð1=L3Þ: ð79Þ

A measurement of the final state will find the final outcome
of the quantum circuit jγðLÞi with probability 1=ðLþ 1Þ. This
can be amplified by inserting identity operators at the end of
the circuit, hence causing the history state to include a greater
superposition of the final outcome of the circuit. Together
these results show that there is an efficient implementation of
any given quantum circuit using the adiabatic algorithm with

HðsÞ. Here and elsewhere “efficient” means up to polynomial
overhead, i.e., where tf scales as a polynomial in L.
The proof techniques used to obtain these results are

instructive and of independent interest, so we review addi-
tional technical details in Appendix C.
To conclude this section, we mention additional results

supporting the equivalence of the circuit and adiabatic
approach in terms of state preparation. Aharonov and
Ta-Shma (2003) showed (Theorem 2) that any quantum state
that can be efficiently generated in the circuit model can also
be efficiently generated by an adiabatic approach, and vice
versa, for the same initial state. The proof relies on two
important lemmas, the “sparse Hamiltonian lemma” and the
“jagged adiabatic path” lemma. The former gives conditions
under which a Hamiltonian is efficiently simulatable in the
circuit model, and the latter provides conditions under which a
sequence of Hamiltonians, defining a path, can have a non-
negligible spectral gap.

C. Fermionic ground state quantum computation

A model of ground state quantum computation (GSQC)
using fermions was independently proposed by Mizel,
Mitchell, and Cohen (2001) [see also Mizel, Mitchell, and
Cohen (2002), Mizel (2004), andMao (2005a, 2005b)] around
the same time as AQC. In GSQC, one executes a quantum
circuit by producing a ground state that spatially encodes the
entire temporal trajectory of the circuit, from input to output.
Mizel, Lidar, and Mitchell (2007) showed how to adiabatically
reach the desired ground state, thus providing an alternative to
history state-type constructions for universal AQC. One of the
differences between the GSQC and history state constructions
is that instead of relying on the Feynman “global clock
particle” idea, particles are synchronized locally (via CNOT

gates), an idea that traces back to Margolus (1990) and was
later adopted in some of the space-time circuit-to-Hamiltonian
constructions (Breuckmann and Terhal, 2014).
Consider a quantum circuit with n qubits and depth L. We

associate 2ðLþ 1Þ fermionic modes with every qubit q, via
creation operators a†q;l and b†q;l, where l ¼ 0;…; L. One can
view these 2nðLþ 1Þ modes as the state space of n spin-1=2
fermions, where each fermion can be localized at sites on a 1D
(time) line of length Lþ 1. To illustrate this with a concrete
physical system, imagine a two-dimensional array of quantum
dotswithLþ 1 columns and two rows per qubit, corresponding
to the j0i and j1i basis states of that qubit. A total of n electrons
is placed in the array. The state of each qubit determines the spin
state of the corresponding electron, which in term determines
which of the two rows it is in, while the clock of each qubit is
represented by which column the electron is in.
It is convenient to group creation operators into row vectors

C†
q;l ¼ ða†q;lb†q;lÞ. Then for each single-qubit gate Uð1Þ

q;l we
introduce a term

Hð1Þ
q;lðsÞ¼ ½C†

q;l−sC†
q;l−1ðUð1Þ

q;lÞ†�ðCq;l−sCq;l−1U
ð1Þ
q;lÞ ð80Þ

into the circuit Hamiltonian Hcircuit. The off-diagonal terms
represent hopping or tunneling of the qth electron from site
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l − 1 to l and vice versa, while Uð1Þ
q;l acts on the electron’s

spin. The diagonal terms C†
q;lCq;l and C†

q;l−1Cq;l−1 ensure

that Hð1Þ
q;l ≥ 0. The parameter s ∈ ½0; 1� controls the interpo-

lation from the initial, simple to prepare ground state at s ¼ 0

when there is no tunneling and every electron is frozen in

place, to the full realization of all the gates Uð1Þ
q;l when s ¼ 1.

One can similarly define CNOT Hamiltonian terms between
electrons or fermions, whose form can be found in Mizel,
Lidar, and Mitchell (2007) [see also Breuckmann and Terhal
(2014)]. These 2-local terms can be understood as a sum of an
identity and NOT term. For such two-qubit gates, the fermions
corresponding to the control and target qubits tunnel forward
or backward and the internal spin state of the target fermion
changes depending on the internal state of the control fermion.
An important additional ingredient is the addition of a penalty
term that imposes an energy penalty on states in which one
qubit has gone through the CNOT gate without the other.
Instead of the Feynman clock used in the history state
construction, there are many local clocks, one per qubit.
The synchronization mechanism takes place via the CNOT

Hamiltonian. Moreover, the entire construction naturally
involves only 2-local interactions between fermions in 2D.
While the fermionic GSQC model proposed by Mizel,

Lidar, and Mitchell (2007) was shown there to be universal for
AQC, its gap analysis was incomplete.22 This was fixed by
Childs, Gosset, and Webb (2013), which proved the “null
space projection lemma” that was implicitly assumed by
Mizel, Lidar, and Mitchell (2007). This lemma is interesting
in its own right, so we reproduce it here.

Lemma 2: Null space projection lemma. Let ΔðAÞ
denote the smallest nonzero eigenvalue of the positive semi-
definite operator A. Let H0 and H1 be positive semidefinite
and assume the nullspace S of H0 is nonempty. Also assume
that ΔðH1jSÞ ≥ c > 0 and ΔðH0Þ ≥ d > 0. Then

ΔðH0 þH1Þ ≥
cd

cþ dþ kH1k
: ð81Þ

As shown by Breuckmann and Terhal (2014), the fermionic
GSQC model can be unitarily mapped onto the space-time
circuit-to-Hamiltonian model for qubits in 2D, where the gap
analysis is more convenient. Using the same mapping,
Breuckmann and Terhal (2014) also showed that the fermionic
model of Mizel, Lidar, and Mitchell (2007) is in fact QMA
complete. We thus proceed to discuss the space-time
model next.

D. Space-time circuit-to-Hamiltonian construction

Here we review another construction that realizes universal
adiabatic quantum computation (Gosset, Terhal, and
Vershynina, 2015; Lloyd and Terhal, 2016). This builds on
the so-called space-time circuit-to-Hamiltonian construction
(Breuckmann and Terhal, 2014), which in turn is based on the
Hamiltonian computation construction of Janzing (2007). We
consider the 2n-qubit quantum circuit with n2 two-qubit
gates, arranged as shown in Fig. 3(a). This form is sufficient
for universal quantum computation (Janzing, 2007). An
equivalent representation of the circuit is given in Fig. 3(b),
where the n2 gates are arranged in a rotated n × n grid. Each
plaquette p is associated with a gateUp, of which the majority
are identity gates. Only a k × k subgrid of the n × n grid with
k ¼ ffiffiffi

n
p

=16 has nonidentity gates, with the subgrid located as
shown in Fig. 3(c). This region is referred to as the interaction
region.
The circuit is mapped to a Hamiltonian HðλÞ, with

λ ∈ ½0; 1�. The Hamiltonian describes the evolution of par-
ticles that live on the edges of the rotated n × n grid.
The positions of the particles are given in terms of the
coordinates ðt; wÞ ∈ f1;…; 2ng2 as shown in Fig. 3(b).
Each particle has 2 internal degrees of freedom in order to
encode the qubits of the circuit. Let at;s½w� denote the
annihilation operator which annihilates a particle with internal
state s ∈ f0; 1g on the edge ðt; wÞ. The number operator is
defined as nt;s½w� ¼ a†t;s½w�at;s½w�, which counts the number of
particles (which will be either 0 or 1) at position ðt; wÞ with
state s. Let nt½w� ¼ nt;0½w� þ nt;1½w�.
We focus on configurations of particles that form connected

segments starting at the top and ending at the bottom [an
example is shown in Fig. 3(b)], referred to as consistent
connected string configurations. For a fixed w (i.e., a hori-
zontal line on the rotated grid), there is only one occupied
edge. We can describe such configurations in terms of 2n bits,
denoted by z. Specifically, let the bit value 0 correspond to an
edge going down and left and 1 correspond to an edge going

(a) (b) (c)

FIG. 3. (a) A 2n ¼ 8 qubit quantum circuit, where each gray
square (n2 ¼ 16 in total) corresponds to a two-qubit gate. (b) An
equivalent representation of the quantum circuit in (a) in terms of
a rotated grid. The dashed red line corresponds to an allowed
string configuration for the particles. (c) The circuit is constrained
such that the majority of the gates are identity except in a k × k
subgrid (shown in black), located such that its left vertex is at the
center of the rotated grid. A successful computation requires the t
positions of the 2k particles with w positions that cross the
interaction region to lie to the right of the interaction region. See
also Fig. 1 in Gosset, Terhal, and Vershynina (2015).

22Mizel, Lidar, and Mitchell (2007), p. 4 claimed that
“hZjHjZi ≥ EOð1=N2Þ” (N is L in our notation), implying a lower
bound on the spectral gap of the total HamiltonianH. This claim was
based on Mizel, Mitchell, and Cohen (2002), but was in fact not
proven there. Here E is the energy scale of the CNOT terms, the total
Hamiltonian is H ¼ H0 þH1, where H0 contains all of the single-
qubit terms, H1 includes all of the CNOT terms, and jZi denotes the
known ground state ofH0. As pointed out by Breuckmann and Terhal
(2014), the missing step is essentially to exclude zero-energy, invalid
time configurations.
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down and right. The Hamming weight of such configurations
must be n, since they start and end in the middle of the grid
and so must go left and right an equal number of times.
We are now ready to describe the Hamiltonian

HðλÞ ¼ Hstring þHcircuitðλÞ þHinput: ð82Þ

• Hinput: This term ensures that the ground state has the
internal state of all particles set to s ¼ 0 when the string
lies on the left-hand side of the grid by energetically
penalizing all states (on the left-hand side) with s ¼ 1. It
is given by

Hinput ¼
X2n
w¼1

X
t≤n

nt;1½w�: ð83Þ

• Hstring: This term ensures that the ground state is in the
subspace of connected strings. Consider a single vertex v
in the grid with incident edges labeled by ðt; wÞ,
ðtþ 1; wÞ, ðt; wþ 1Þ, and ðtþ 1; wþ 1Þ. We can asso-
ciate a Hamiltonian Hv

string to each vertex,

Hv
string ¼ nt½w� þ ntþ1½w� þ nt½wþ 1� þ ntþ1½wþ 1�

− 2ðnt½w� þ ntþ1½w�Þðnt½wþ 1� þ ntþ1½wþ 1�Þ
ð84Þ

(for vertices at the boundary of the grid with two or three
incident edges, the definition of Hv

string needs to be
modified accordingly) such that Hstring ¼

P
v H

v
string.

For connected string configurations, the energy due to
this Hamiltonian is zero, while disconnected strings with
L string segments have a higher energy 2L − 2.

• HcircuitðλÞ ¼
P

p H
p
gateðλÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
Hinit: Define for

each plaquette p with borders given by the edges
fðt; wÞ, ðtþ 1; wÞ, ðt; wþ 1Þ, and ðtþ 1; wþ 1Þg

Hp
gateðλÞ ¼ nt½w�nt½wþ 1� þ ntþ1½w�ntþ1½wþ 1�

þ λHp
prop; ð85Þ

where

Hp
prop ¼ −

X
α;β;γ;δ

ðhβ; δjUpjα; γia†tþ1;βat;α½w�

×a†tþ1;δ½wþ 1�at;γ½wþ 1�Þ þ H:c: ð86Þ

The term Hp
prop allows for a pair of particles located on

the left (right) edges of a plaquette to hop together such
that they both are located on the right (left) edges of a
plaquette, with their internal states changed according to
Up (U†

p). Note that this move preserves the connected-
ness of the string. Furthermore, the term

P
p H

p
gateð0Þ is

minimized by a configuration lying either entirely on the
left border (corresponding to the bit string z ¼ 0n1n) or
entirely on the right border (z ¼ 1n0n), which in con-
junction with Hinit, given by

Hinit ¼ nnþ1½w ¼ 1� þ nnþ1½w ¼ 2n�; ð87Þ

ensures that the ground state of Hð0Þ is such that all
particles lie along the left boundary of the grid. Including
the effects of Hcircuitð0Þ and Hinput, the ground state of
Hð0Þ is given by j02nij0n1ni with eigenvalue 1. This is
an easily prepared ground state.

It can be shown that the ground state of HðλÞ [Eq. (82)]
along λ ∈ ½0; 1� is unique and the energy gap above the ground
state is lower bounded by 1=polyðnÞ for all λ ∈ ½0; 1�
[Theorem 1 in Gosset, Terhal, and Vershynina (2015)]. To
measure the output of the quantum circuit, we measure the t
positions of the 2k particles for the w values that cross the
interaction region (recall that there will always be one particle
per horizontal w line). If we find that all 2k particles lie to the
right of the interaction region, then their internal states must
encode the output of the quantum circuit. For the choice
k ¼ ffiffiffi

n
p

=16, this occurs with a probability lower bounded by a
positive constant. Together these properties allow for an
efficient (up to polynomial overhead) simulation of the
quantum circuit using the adiabatic algorithm generated
by HðλÞ.
However, this implementation requires four-body inter-

actions [see, for example, the product term in Eq. (84)].
Lloyd and Terhal (2016) presented improvements to this
construction with only 2-local interactions using a first-order
perturbation gadget and a quadratic increase in the number
of qubits from the original quantum circuit. The use of only
first-order perturbation theory is particularly significant,
since effective interactions obtained in the kth order degen-
erate perturbation theory with perturbative coupling g and gap
Δ of the unperturbed Hamiltonian scale in strength as
gðg=ΔÞk−1, leading to a correspondingly small gap of the
effective Hamiltonian. In addition, multiple uses of higher-
order perturbation theory can increase qubit overhead and
complexity.

E. Universal AQC in 1D with nine-state particles

The constructions of universal AQC reviewed so far are all
spatially two dimensional (2D). It was unclear for some time
whether universal AQC is possible in 1D, with some sugges-
tive evidence to the contrary, such as the success of density
matrix renormalization group techniques in calculating
ground state energies and other properties of a variety of
1D quantum systems (Schollwöck, 2005). Moreover, classical
1D systems are generally “easy”; e.g., a 1D restriction of
MAX-2-SATwith p-state variables can be solved by dynamic
programming and hence is in the complexity class P. In
addition, the area law implies that 1D systems with a constant
spectral gap can be efficiently simulated classically (Hastings,
2009). All this implies that adiabatic evolution with 1D
Hamiltonians is not useful for universal QC unless certain
conditions are met, in particular, a spectral gap that tends
to zero.
This was accomplished by Aharonov et al. (2009), who

proved that it is possible to perform universal AQC using a 1D
quantum system of nine-state particles. The striking
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qualitative difference between the quantum and the classical
1D versions of the same problem seems surprising. However,
the k-local Hamiltonian problem allows for the encoding of an
extra dimension (time), by making the ground state a super-
position of states corresponding to different times. This means
that the correct analog of the quantum 1D local Hamiltonian
problem is 2D classical MAX-k-SAT, which is NP complete.
The proof presented by Aharonov et al. (2009) builds

heavily on the history state construction reviewed in Sec. IV.B.
However, there are a couple of important differences. As in the
history state construction, the starting point is a quantum
circuit Ux acting on n qubits (where x is the classical input to
the function implemented by the circuit in the universal AQC
case). A 1D p-state Hamiltonian is designed which will verify
correct propagation according to this circuit. Then this is used
as the final Hamiltonian for the adiabatic evolution. The
problem with directly realizing this in the 1D case is that only
the particles nearest to the clock would be able to take
advantage of it in order to check correct propagation in time.
To overcome this, the circuit Ux is first modified into a new
circuit ~Ux with a distributed clock. The history state con-
struction relies on the ability to copy qubits from one column
to the next in order to move to the next block of gates in the
computation, so a new strategy is needed in 1D. For the
modified circuit ~Ux, the qubits are instead placed in a block of
n adjacent particles. One set of gates is performed, and then all
of the qubits are moved over n places to advance time in the
original circuit Ux. More states per particle are needed to
accomplish this than in the 2D case. The second main new
idea that is needed is related to ensuring that the state of the
system had a valid structure. In the 2D case local constraints
were used to check that there are no two-qubit states in
adjacent columns. However, using only local constraints, there
is no way to check that there are exactly n-qubit data states in
an unknown location in a 1D system, since there are only a
constant number of local rules available, which are therefore
unable to count to an arbitrarily large n. Instead, it is ensured
that, under the transition rules of the system, any invalid
configurations will evolve in polynomial time into a configu-
ration which can be detected as illegal by local rules. Thus, for
every state which is not a valid history state, either the
propagation is wrong, which implies an energy penalty due
to the propagation Hamiltonian, or the state evolves to an
illegal configuration which is locally detectable, which
implies an energy penalty due to the local check of illegal
configurations. For additional technical details required to
complete the proof see Aharonov et al. (2009). A 20-state
translation-invariant modification of the construction from
Aharonov et al. (2009) for universal AQC in 1D was given by
Nagaj and Wocjan (2008), improving on a 56-state construc-
tion by Janzing, Wocjan, and Zhang (2008).

F. Adiabatic gap amplification

In all universality constructions the run time of the adiabatic
simulation of a quantum circuit depends on the inverse
minimum gap of the simulating Hamiltonian. Therefore it
is of interest to develop a general technique for amplifying this
gap as was done by Somma and Boixo (2013).

Consider a HamiltonianH with ground state jϕi. The goal is
to construct a new HamiltonianH0 that has jϕi as an eigenstate
(not necessarily the ground state) but with a larger spectral
gap. A quadratic spectral gap amplification is possible whenH
is frustration free (Bravyi and Terhal, 2009). Definition 4
(frustration freeness). A Hamiltonian H ∈ CN × CN is
frustration free if it can be written as a sum over positive
semidefinite operators H ¼ P

L
k¼1 akΠk, with ak ∈ ½0; 1� and

L ¼ polylogðNÞ. Further, if jϕi is theground state ofH then it is
a ground state (i.e., zero eigenvector) of every term in the
decomposition of H, i.e., Πkjϕi ¼ 0∀ k.
Somma and Boixo (2013) took Πk as projectors. The

quadratic amplification is optimal for frustration-free
Hamiltonians in a suitable black-box model, and no spectral
gap amplification is possible, in general, if the frustration-free
property is removed. An important caveat is that the con-
struction replaces ground state evolution by evolution of a
state that lies in the middle of the spectrum; thus it does not fit
the strict definition of AQC (Definition 1). We will have
another occasion to relax the definition in the same sense in
Sec. VI.C.
We now review the construction by Somma and

Boixo (2013) in some detail. To place it in context, note
that the universality results reviewed thus far can be summa-
rized as follows: Any quantum circuit specified by
unitary gates U1;…; UQ can be simulated by an adiabatic
quantum evolution involving frustration-free Hamiltonians
HðsÞ ¼ P

L
k¼1 akðsÞΠkðsÞ. The ground state of the final

Hamiltonian Hð1Þ has a large overlap with the output state
of the quantum circuit. Moreover, L is polynomial in Q, and
Πk denotes nearest-neighbor, two-body interactions between
spins of corresponding many-body systems in one- or two-
dimensional lattices. The inverse minimum gap of HðsÞ is
polynomial in Q, and hence so is the duration of the adiabatic
simulation.
Now, consider a frustration-free Hamiltonian

HðsÞ ¼
XL
k¼1

akΠkðsÞ; ð88Þ

where each ΠkðsÞ is a projector for all s ∈ ½0; 1� and is a local
operator. Denote the eigenvalues of this Hamiltonian by fλjg,
where λ1 ¼ 0 is the ground state energy. Then, take the
Hamiltonian

H̄ðsÞ ¼
XL
k¼1

ffiffiffiffiffi
ak

p
ΠkðsÞ ⊗ ðjkih0j þ j0ihkjÞ; ð89Þ

where j0i and jki are ancilla registers defined over 1 and
log2ðLÞ qubits, respectively. It can be shown that H̄ðsÞ has the
desired properties, i.e., if jψðsÞi was the ground state of H,
then jψðsÞij10 � � � 0i is a (degenerate) zero-eigenvalue eigen-
state of H̄ and the eigenvalues of H̄ðsÞ are f� ffiffiffiffi

λj
p g [the proof

is given in Appendix B of Somma and Boixo (2013)]. Thus,
the gap has been quadratically amplified, and one can evolve
with H̄ to transform eigenstates at s ¼ 0 to eigenstates at
s ¼ 1 and simulate the original quantum circuit with a
quadratic speedup over the simulation involving H.

Tameem Albash and Daniel A. Lidar: Adiabatic quantum computation

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015002-22



In general H̄ðsÞ will be log2ðLÞ local due to the appearance
of jki. To avoid thesemany-body interactions one can represent
jki using a unary encoding, i.e., jki ↦ j0 � � � 010 � � � 0i (with 1
at the kth position). In this single-particle subspace the new
Hamiltonian becomes

H̄ðsÞ ¼
XL
k¼1

ffiffiffiffiffi
ak

p
ΠkðsÞ ⊗ ðσþk σ−0 þ σ−k σ

þ
0 Þ; ð90Þ

where σ� ¼ ðσx � iσyÞ=2 are Pauli raising and lowering
operators. Note that since each ΠkðsÞ interacts with the same
qubit 0 of the new register, if the originalH was geometrically
local, then H̄ is not, i.e., it has a central spin geometry.
One more issue that needs to be dealt with is the degeneracy

of the zero eigenvalue. To remove this degeneracy from
contributions within the single-particle subspace one can
add a penalty term 1

4

ffiffiffiffi
Δ

p ð1þ σz0Þ to H̄ðsÞ, which penalizes
all states with qubit 0 in j0i; the relevant spectral gap in the
single-particle subspace is then still of order

ffiffiffiffi
Δ

p
. To remove

additional degeneracy from the many-particle subspaces one
can add penalties for states that belong to such subspaces.
Adding Z ¼ ðL − 2Þ1 −

P
L
k¼0 σ

z
k achieves this since it acts as

a penalty that grows with the Hamming weight a of states in
the a-particle subspace. Thus

H0ðsÞ ¼ 1

L1=d

�XL
k¼1

ffiffiffiffiffi
ak

p
ΠkðsÞ ⊗ ðjkih0j þ j0ihkjÞ

þ 1

4

ffiffiffiffi
Δ

p
ð1þ σz0Þ

�
þ Z ð91Þ

has jψ0ij10 � � � 0i as a unique eigenstate of eigenvalue 0, and
all other eigenvalues are at a distance of at least

ffiffiffiffi
Δ

p
=L1=d if

d ≥ 2.23 This is the desired quadratic gap amplification result.
How far can gap amplification methods go? Schaller (2008)

showed that for the one-dimensional transverse field quantum
Ising model, and for the preparation of cluster states
(Raussendorf and Briegel, 2001), it is possible to use a series
of straight-line interpolations in order to generate a schedule
along which the gap is always greater than a constant
independent of the system size, thus avoiding the quantum
phase transition. However, there exists an efficient method to
compute the ground state expectation values of local operators
of 2D lattice Hamiltonians undergoing exact adiabatic evo-
lution, and this implies that adiabatic quantum algorithms
based on such local Hamiltonians, with unique ground states,
can be simulated efficiently if the spectral gap does not scale
with the system size (Osborne, 2007).

V. HAMILTONIAN QUANTUM COMPLEXITY THEORY
AND UNIVERSAL AQC

In this section we review Hamiltonian quantum complexity
theory from the perspective of QMA completeness. This

theory naturally incorporates decision problems of the type
that motivate AQC. Essentially, it concerns a problem involv-
ing the ground state of a local Hamiltonian, whose ground
state energy is promised to either be below a threshold a or
above another threshold b > a, and where b − a is poly-
nomially small in the system size. In some cases this problem
is easy and in other cases it turns out to be so hard that we do
not hope to solve it efficiently even on a quantum computer.
Characterizing which types of local Hamiltonians fall into the
latter category is the subject of QMA completeness.
Hamiltonian quantum complexity theory is an extremely

rich subject that is rapidly advancing and has already been
reviewed a number of times, so we will only touch upon it and
highlight some aspects that are relevant to AQC. Perhaps the
most direct connection is the fact that 2-local Hamiltonians of
a form that naturally appears in AQC are QMA complete.
Additionally, some of the technical tools that played an
important role in QMA-completeness locality reductions,
such as perturbative gadgets, have also found great use in
proofs of the universality of AQC with different Hamiltonians.
The reviews by Aharonov and Naveh (2002), Gharibian

(2013), and Gharibian et al. (2015) are excellent resources for
additional perspectives and details on Hamiltonian quantum
complexity theory.

A. Background

1. Boolean satisfiability problem: k-SAT

Consider a Boolean formula Φ that depends on n literals
xi ∈ f0; 1g (with 0 and 1 representing false and true, respec-
tively) or their negations. The problem is to decide whether
there exists an assignment of values to the literals that satisfies
the Boolean formula, i.e., such that Φ ¼ 1. If there exists such
an assignment then the formula is satisfiable; otherwise, it is
unsatisfiable.
The Boolean formula is typically written in conjunctive

normal form: it iswritten in terms of a conjunction (AND—∧) of
r clauses, where each clause contains the disjunction (OR—∨)
of k literals (variables) or their negation (NOT—¬). A literal and
its negation are often referred to as positive and negative
literals. The Boolean formula is written as

Φ ¼ C1 ∧ C2 ∧ � � � ∧ Cr; ð92Þ

where Ci ¼ xi1∨xi2 � � �∨xik and xij is the jth positive or
negative literal in the ith clause. The question of Boolean
satisfiability, or k-SAT, is whether there exists a choice X ¼
ðx1;…; xnÞ such that ΦðXÞ ¼ 1. Note that it requires only
OðkrÞ steps to check whether X is a satisfying assignment, yet
there are 2n possible choices for X.
For k ¼ 3, the Boolean satisfiability problem, called 3-SAT,

is NP complete. Let us explain what this means.

2. NP, NP complete, and NP hard

Informally, problems in NP are those whose verification can
be done efficiently (e.g., checking whether a Boolean formula
is satisfied). An important conjecture, called the exponential
time hypothesis (Impagliazzo and Paturi, 2001), states that
there are problems in NP that take exponentially long to solve.

23The factor L1=d in Eq. (91) is introduced so that the eigenvalues
coming from the many-particle subspaces will not mix with the
eigenvalues of the single-particle subspace.
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Formally, a decision problem Q is in NP if and only if there
is an efficient algorithm V, called the verifier, such that for all
inputs η (e.g., in the case of SAT, this would be the clauses) of
the problem:

• If QðηÞ ¼ 1, then there exists a witness X such that
Vðη; XÞ ¼ 1.

• If QðηÞ ¼ 0, then for all witnesses X we have
Vðη; XÞ ¼ 0.

In both cases, we typically take jXj ¼ polyðjηjÞ, where jηj is the
number of bits in the binary string associated with the input η.
The verifier is efficient in the sense that its cost scales as
polyðjXjÞ. In SAT the witness X would be our test assignment.
A decision problem Q is NP complete if
• Q is in NP.
• Every problem in NP is reducible to Q in poly-
nomial time.

Here reducibility means that given a problem A in NP and a
problem B that is NP complete, A can be solved using a
hypothetical polynomial-time algorithm that solves for B. A
commonly used reduction is the polynomial-time many-to-one
reduction (Karp, 1972), whereby the inputs of A are mapped
into the inputs toB such that the output ofBmatches the output
ofA. The hypothetical algorithm then solvesB to get the answer
to A.
A decision problem Q is NP hard if every problem in NP is

reducible to Q in polynomial time. (Note that unlike the NP-
complete case, Q does not need to be in NP.) Clearly, NP
complete ⊆ NP hard.

3. The k-local Hamiltonian problem

The history state construction of Sec. IV.B relies on a 5-local
Hamiltonian. Such aHamiltonian belongs to an important class
of decision problems known as the k-local Hamiltonian
problem of which a complete complexity classification was
given byCubitt andMontanaro (2016) subject to restrictions on
the set of local terms from which the Hamiltonian can be
composed [see also Bravyi and Hastings (2014)]. Recall that a
k-local Hamiltonian is a Hermitian matrix that acts nontrivially
on at most k p-state particles.
The k-local Hamiltonian problem is defined on n qubits,

with the following input:
• A k-local Hamiltonian H ¼ P

r
i¼1 Hi with r ¼ polyðnÞ.

Each Hi is k local and satisfies kHik ¼ polyðnÞ and its
nonzero entries are specified by polyðnÞ bits.

• Two real numbers a and b specified with polyðnÞ bits of
precision, such that

b − a >
1

polyðnÞ : ð93Þ

The output (0 or 1) answers the question: Is the smallest
eigenvalue of H smaller than a (output is 1), or are all
eigenvalues larger than b (output is 0)? We are promised that
the ground state eigenvalue cannot be between a and b.24

We can map 3-SAT to the 3-local Hamiltonian problem as
follows. For every clause Ci (which involves three literals), we

can define a 3-local projector Hi onto all the unsatisfying
assignments of Ci. Because Hi is a projector, it has eigen-
values 0 and 1, where the 0 eigenvalue is associated with
satisfying assignments and the 1 eigenvalue with unsatisfying
assignments. Therefore,

HjXi ¼
Xr
i¼1

HijXi ¼ qjXi; ð94Þ

where q is the number of unsatisfied assignments by X. Thus
3-SAT is equivalent to the following 3-local Hamiltonian
problem: is the smallest eigenvalue of H zero (the 3-SAT
problem is satisfiable) or is it at least 1 (the 3-SAT problem is
unsatisfiable)?

4. Motivation for adiabatic quantum computing

Adiabatic evolution seems well suited to tackling the
k-local Hamiltonian problem. By initializing an n-qubit
system in an easily prepared ground state, we can in principle
evolve the system with a time-dependent Hamiltonian whose
end point is the k-local Hamiltonian. If the evolution is
adiabatic, then we are guaranteed to be in the ground state
of the k-local Hamiltonian with high probability. By meas-
uring the state of the system, we can determine the energy
eigenvalue of the state (which hopefully is the ground state
energy) and hence determine the answer to an NP-complete
problem such as 3-SAT. This motivated early work on the
quantum adiabatic algorithm (Farhi et al., 2001).
Another possibility is to try to use AQC as the verifier.

However, the quantum algorithm gives us the answer only
probabilistically, so we must first define a probabilistic analog
of NP and then a quantum version. These new complexity
classes are MA and QMA (Kitaev, Shen, and Vyalyi, 2000).

B. MA and QMA

Informally, MA can be thought of as a probabilistic analog
of NP, allowing for two-sided errors. Formally, a decision
problem Q is in MA iff there is an efficient probabilistic
verifier V such that for all inputs η of the problem:

• If QðηÞ ¼ 1, then there exists a witness X such that
Pr½Vðη; XÞ ¼ 1� ≥ 2=3 (completeness).

• If QðηÞ ¼ 0, then for all witnesses X we have
Pr½Vðη; XÞ ¼ 1� ≤ 1=3 (soundness).

Again we take jXj ¼ polyðjηjÞ. MA is typically viewed as an
interaction between two parties, Merlin and Arthur. Merlin
provides Arthur with a witness X on which Arthur runs V. If
QðηÞ ¼ 0, Merlin should never be able to fool Arthur with a
witnessX into believing thatQðηÞ ¼ 1with probability> 1=3.
Note that there is nothing special about the probabilities

ð2=3; 1=3Þ. We can generalize our description to MAðc; sÞ.
Claim 1. MAðc; c − 1=jηjgÞ ⊆ MAð2=3; 1=3Þ ¼ MAð1−

e−jηjg ; e−jηjgÞ, where g is a constant, c > 0, and
c − 1=jηjg < 1.
The proof of this “amplification lemma” (Marriott and

Watrous, 2005; Goldreich, 2008; Nagaj, Wocjan, and Zhang,
2009) is interesting since it invokes the Chernoff bound, a
widely used tool. We thus present it in Appendix D for
pedagogical interest.

24The quantity b − a is sometimes called the “promise gap” and is
distinct from the spectral gap.
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The complexity class QMA can be viewed as the quantum
analog of MA. Thus, QMA is informally the class of problems
that can be efficiently checked on a quantum computer given a
“witness” quantum state related to the answer to the problem.
Formally, define a quantum verifier V (a quantum circuit) that
takes η and a quantum witness state jXi ∈ ðC2Þ⊗polyðjηjÞ as
inputs and probabilistically outputs a binary number. The
decision problem Q is said to be in QMA if and only if there
exists an efficient (polynomial time) V for all inputs η of the
problem that satisfies the following:

• If QðηÞ ¼ 1, then there exists a witness jXi such that
Pr½Vðη; jXiÞ ¼ 1� ≥ 2=3 (completeness).

• If QðηÞ ¼ 0, then for all witnesses jXi we have
Pr½Vðη; jXiÞ ¼ 1� ≤ 1=3 (soundness).

The amplification lemma applies here as well. The definition
of QMA also allows V to have polyðjηjÞ ancilla qubits each
initialized in the j0i state (Gharibian et al., 2015).
One can also define the class QCMA, which is similar to

QMA except that jXi is a classical state (Aharonov and Naveh,
2002). Since the quantum verifier can force Merlin to send him
a classical witness by measuring the witness before applying
the quantum algorithm, we have MA ⊆ QCMA ⊆ QMA.

C. The general relation between QMA completeness and
universal AQC

The class of efficiently solvable problems on a quantum
computer is bounded error quantum polynomial time (BQP)
(Bernstein and Vazirani, 1993), which consists of the class of
decision problems solvable by a uniform family of polyno-
mial-size quantum circuits with error probability bounded
below 1=2. Because of the polynomial equivalence between
AQC and the circuit model, BQP is also the class of efficiently
solvable problems on a universal adiabatic quantum computer.
Its classical analog is the class bounded error probabilistic
polynomial time (BPP), and as expected BPP ⊆ BQP
(Bernstein and Vazirani, 1997). In addition, BQP ⊆ QCMA
(Aharonov and Naveh, 2002). Another interesting characteri-
zation is that BQP ¼ QMAlog, where QMAlog is the same as
QMA except that the quantum proof has Oðlog jηjÞ qubits
instead of polyðjηjÞ (Marriott and Watrous, 2005).
This motivates the study of QMA, and, in particular, QMA

completeness, as a tool for understanding universality. Indeed,
it is often the case that whenever adiabatic universality can be
proven for some class of Hamiltonians, then the local
Hamiltonian problem with roughly the same class can be
shown to beQMAcomplete and vice versa. Note, however, that
there is no formal implication from either of those problems to
the other (Aharonov et al., 2009). On the one hand, proving
QMA completeness is in general substantially harder than
achieving universal AQC, where we can choose the initial state
to be any easily prepared state that will help us solve the
problem, sowe can choose towork in any convenient subspace
that is invariant under the Hamiltonian. Indeed, in the history
state construction, we introduce penalty terms to guard against
illegal clock states [recall Eq. (74)]. For QMA, the states we
work with are chosen adversarially from the full Hilbert space,
and we must be able to check, using only local Hamiltonian
terms, that they are of the correct (clock-state) form. On the
other hand, proving adiabatic universality involves analyzing

the spectral gap of the continuous sequence of Hamiltonians
over the entire duration of the computation, whereas QMA-
completeness proofs are concernedwith only oneHamiltonian.

D. QMA completeness of the k-local Hamiltonian problem and
universal AQC

To prove that a promise problem is QMA complete, one
needs to prove that it is contained in QMA and that it is QMA
hard. The k-local Hamiltonian problem belongs to QMA for
any constant k, and in fact even for k ¼ Oðlog nÞ (Kitaev, Shen,
and Vyalyi, 2000). For pedagogical proofs see Aharonov and
Naveh (2002), Gharibian (2013), and Gharibian et al. (2015).
The first example of a QMA-hard problem was the k-local

Hamiltonian problem for k ≥ 5 (Kitaev, Shen, and Vyalyi,
2000), so that, in particular, the 5-local Hamiltonian problem
is QMA complete. This was reduced to 3-local (Kempe and
Regev, 2003; Nagaj and Mozes, 2007) and then to 2-local
(Kempe, Kitaev, and Regev, 2006). Note that the 1-local
Hamiltonian problem is in the complexity class P, since one
can simply optimize for each 1-local term independently.
Various simplifications of QMA completeness for the 2-local
case followed. In order to describe these, we first need to
define a class of Hamiltonians

H1 ¼
X
ði;jÞ∈E

JxijXiXj þ JyijYiYj þ JzijZiZj

þ
X
i∈V

hxi Xi þ hyi Yi þ hziZi; ð95Þ

where V and E are the vertex and edge sets of a graph
G ¼ ðV; EÞ, and all local fields fhαi g and couplings fJαijg
(α ∈ fx; y; zg) are real. The Heisenberg model corresponds to
Jxij ¼ Jyij ¼ Jzij, the XY model to Jxij ¼ Jyij and Jzij ¼ 0, and
the Ising model to Jxij ¼ Jyij ¼ 0. When Jαij < 0 (> 0) the
interaction between qubits i and j is ferromagnetic (anti-
ferromagnetic). When we write “fully” below we mean that all
interactions have the same sign. Unless explicitly mentioned
otherwise we assume that the local fields are all zero.
Most of the simplifications of QMA completeness are

special cases of Eq. (95):
• Geometrical locality: nearest-neighbor interactions with
G being a 2D square lattice (Oliveira and Terhal, 2008) or
a triangular lattice (Piddock and Montanaro, 2015).

• Simple interactions in 2D: ZZXX and ZX models
(Biamonte and Love, 2008) [defined in Eqs. (98) and
(99)], fully ferromagnetic and fully antiferromagnetic
Heisenberg models with local fields (Schuch and
Verstraete, 2009), antiferromagnetic Heisenberg and
XY models without local fields (Piddock and Montanaro,
2015).

Some of the simplifications of QMA completeness use
other types of Hamiltonians:

• Interacting fermions in 2D and the space-time construc-
tion (Breuckmann and Terhal, 2014).

• Multistate particles in 1D (Nagaj, 2008; Aharonov et al.,
2009; Hallgren, Nagaj, and Narayanaswami, 2013).

• Nontranslationally invariant 1D systems (all two-particle
terms identical but position-dependent one-particle
terms) (Kay, 2008).
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• Translationally invariant 1D systems for which finding
the ground state energy is complete for QMAexp

25

(Gottesman and Irani, 2013).
The 1D case is interesting since, as remarked in Sec. IV.E,

the 1D restriction of MAX-2-SAT with p-state variables is in
P, yet Aharonov et al. (2009) showed that for 12-state
particles the problem of approximating the ground state
energy of a 1D system is QMA complete. This result was
improved to 11-state particles in (Nagaj (2008), and then to 8-
state particles in Hallgren, Nagaj, and Narayanaswami (2013),
who also pointed out a small error in Aharonov et al. (2009)
that could be fixed by using 13-state particles. Whether and at
which point a further Hilbert space dimensionality reduction
becomes impossible remains an interesting open problem.
The reduction from 5-local to 2-local is done using

perturbative gadgets (Kempe, Kitaev, and Regev, 2006;
Biamonte and Love, 2008; Bravyi, DiVencenzo, Loss, and
Terhal, 2008; Jordan and Farhi, 2008; Oliveira and Terhal,
2008; Cao et al., 2015). The goal of the gadget is to
approximate some target Hamiltonian HT of n qubits (e.g.,
the 5-local Hamiltonian from the history state construction at
any time s) by a gadget Hamiltonian HG acting on the same n
qubits as well as an additional polyðnÞ ancilla qubits. The
gadget Hamiltonian is typically written as

HG ¼ HA þ λV; ð96Þ

where HA is an unperturbed Hamiltonian (also called the
penalty Hamiltonian), acting only on the ancilla space, and λV
is a perturbation that acts between the qubits of HT and the
ancilla qubits. Using perturbation theory, which we review in
Appendix E, one can show that the lowest 2n eigenvalues of
HG differ from those ofHT by at most ϵ and the corresponding
eigenstates have an overlap of at least 1 − ϵ.
Completeness of the 2-local Hamiltonian problem means

that every problem in QMA is reducible to the 2-local
Hamiltonian decision problem in polynomial time. Since this
reduction involves perturbative gadgets that preserve the
spectrum of the original 5-local Hamiltonian, this means that
the 2-local Hamiltonian derived from the 5-local Hamiltonian
appearing in the universality proof of Sec. IV.B will also have
an energy gap that is an inverse polynomial in the circuit
length, and that the computation remains in the ground
subspace with illegal clock states gapped away by the (now
2-local) penalty Hamiltonian. In the remainder of this section
we discuss a particularly simple form of 2-local Hamiltonians
that is universal for AQC.
The QMA completeness of general 2-local Hamiltonians

can be extended to show that a more restricted set of 2-local
Hamiltonians composed of real-valued sums of the following
pairwise products of Pauli matrices are QMA complete
(Biamonte and Love, 2008):

fIX; XI; IZ; ZI; ZX; XZ; ZZ; XXg: ð97Þ

The two basic steps to do this are as follows: (1) Using the
result of Bernstein and Vazirani (1997) that any quantum
circuit can be represented using real-valued unitary gates
operating on real-valued wave functions in the proof of the
QMA completeness of the 5-local Hamiltonian of the previous
section, the Hamiltonian terms are all real valued. This
therefore extends QMA completeness to 5-local real
Hamiltonians. (2) The same gadgets used by Kempe,
Kitaev, and Regev (2006) and Oliveira and Terhal (2008)
can be used to reduce the locality from five to two.
This can be further simplified to show that “ZZXX

Hamiltonians” that are linear combinations with real coef-
ficients of only

fIX; XI; IZ; ZI; ZZ; XXg ð98Þ

are QMA complete. This is done by showing, using pertur-
bation theory, that such Hamiltonians can be used to approxi-
mate the σz ⊗ σx and σx ⊗ σz terms. Similarly, perturbation
theory can be used to show that “ZX Hamiltonians” that are
linear combinations with real coefficients of only

fIX; XI; IZ; ZI; ZX; XZg ð99Þ

are QMA complete (Biamonte and Love, 2008; Bravyi and
Hastings, 2014; Cubitt and Montanaro, 2016).

VI. STOQUASTIC ADIABATIC QUANTUM
COMPUTATION

In this section we focus on the special class of “stoquastic
Hamiltonians” [originally introduced by Bravyi, DiVencenzo,
Oliveira, and Terhal (2008)] that often arise in the context of
quantum optimization.
Definition 5 (stoquastic Hamiltonian). A HamiltonianH is

called stoquastic (Bravyi and Terhal, 2009) with respect to a
basis B iffH has real nonpositive off-diagonal matrix elements
in the basis B.
For example, a Hamiltonian is stoquastic in the computa-

tional basis iff

hxjHjx0i ≤ 0 ∀ x; x0 ∈ f0; 1gn x ≠ x0: ð100Þ

The computational basis is often singled out since it plays the
role of the basis in which the final Hamiltonian is measured,
which sometimes coincides with the basis in which that
Hamiltonian is diagonal. The term stoquastic was introduced
due to the similarity to stochastic matrices, such as arise in the
theory of classical Markov chains.
Restricting to any basis still leaves some freedom in the

definition. For example, a Hamiltonian H ¼ −
P

i σ
x
i þHZ,

where HZ is diagonal in the computational basis, is clearly
stoquastic. However, applying a unitary transformation U ¼Q

i σ
z
i to the Hamiltonian gives H0 ¼ P

σxi þHZ, which
according to Definition 5 is not stoquastic in the computa-
tional basis. Applying a local unitary basis transformation
should not change the complexity of the problem. Therefore,
for clarity we fix the basis such that the standard initial
Hamiltonian always carries a minus sign, i.e., −

P
i σ

x
i . From

this point forward, we restrict our discussion of stoquasticity

25QMAexp is the same as QMA but with exponential size (in the
input) witness and verification circuit, whereas both are polynomial
for QMA.
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to the standard computational basis. With this in mind, the
class of stoquastic Hamiltonians includes the fully ferromag-
netic Heisenberg and XY models, and the quantum transverse
field Ising model [recall Eq. (95)].
Given the restriction of the Hamiltonian, one may ask

whether there is a complexity class for which the k-local
stoquastic Hamiltonian problem is complete. This led to the
introduction of the class StoqMA, for which the k ≥ 2-local
stoquastic Hamiltonian is StoqMA complete (Bravyi, Bessen,
and Terhal, 2006). This can be further refined to the result that
the transverse Ising model on degree-3 graphs is StoqMA
complete (Bravyi and Hastings, 2017). Rather than give the
formal and rather involved definition of StoqMA, we note that
the only difference between StoqMA and MA is that a
stoquastic verifier in StoqMA is allowed to do the final
measurement in the fjþi; j−ig basis, whereas a classical
coherent verifier in MA can do a measurement only in the
standard fj0i; j1ig basis.26 Unlike MA and QMA, the thresh-
old probabilities in StoqMA have an inverse polynomial rather
than constant separation; this prevents amplification of the gap
between the threshold probabilities based on repeated mea-
surements with majority voting. Finally, it is known that
MA ⊆ StoqMA ⊆ QMA (Bravyi, Bessen, and Terhal, 2006).
To capture the important class of problems that are

characterized by stoquastic evolution with the constraint of
adiabatic evolution, we first introduce the following definition
of a model of computation:
Definition 6 (StoqAQC). Stoquastic adiabatic quantum

computation (StoqAQC) is the special case of AQC
(Definition 1) restricted to k-local (k fixed) stoquastic
Hamiltonians.
Because we defined StoqAQC as a special case of AQC, the

computation must proceed in the ground state. However, recall
that the algorithm for the glued-trees problem (Sec. III.D) is
not subject to this ground state restriction and hence is not in
StoqAQC. In Sec. VI.C we consider another model of
stoquastic computation that is not subject to the ground state
restriction.
StoqAQC has generated considerable interest since exper-

imental implementations of stoquastic Hamiltonians are quite
advanced (Bunyk et al., 2014; Weber et al., 2017). To
characterize its computational power, we introduce a natural
promise problem based on StoqAQC and modeled after the k-
local Hamiltonian problem27:
Definition 7 (StoqAQCEval). The StoqAQCEval problem

is defined on n qubits, with the following input:
• A continuous family of ðk ≥ 2Þ-local (k fixed) stoquastic
Hamiltonians HðsÞ ¼ P

r
i¼1 HiðsÞ with r ¼ polyðnÞ and

parametrized by s ∈ ½0; 1�. For all i and all s, the nonzero
entries of HiðsÞ are specified by polyðnÞ bits of
precision, and kHiðsÞk ¼ polyðnÞ. The ground state

energy gap Δ½HðsÞ� satisfies Δ½HðsÞ� ≥ 1=polyðnÞ for
all s.

• Two real numbers a and b specified with polyðnÞ bits of
precision, and b − a > 1=polyðnÞ.

The output (0 or 1) answers the question: Is the smallest
eigenvalue of Hðs ¼ 1Þ smaller than a (output is 1), or are all
eigenvalues larger than b (output is 0)? Just as in the local
Hamiltonian problem, we are promised that the outcome in
which the ground state energy is between a and b is not
possible.
This allows us to informally define the complexity class that

captures StoqAQC.
Definition 8 (BStoqP). BStoqP is the set of problems that

are polynomial-time reducible to StoqAQCEval.
The StoqAQCEval problem is clearly in StoqMA, because

the (k ≥ 2)-local stoquastic Hamiltonian problem is StoqMA
complete (Bravyi, Bessen, and Terhal, 2006). Hence
BStoqP ⊆ StoqMA, as depicted in Fig. 4, which summarizes
the relations between many of the complexity classes dis-
cussed.28 NP and MA are unlikely to be subsets of BStoqP,
since StoqAQC would not be expected to solve NP-complete
problems in polynomial time. The tightest inclusion in a
classical complexity class we know of is in AM,29 since the
latter includes StoqMA (Bravyi, DiVencenzo, Oliveira, and
Terhal, 2008). It is clear that BPP ⊆ BStoqP, since 5-local
StoqAQCEval is BPP hard (using a classical reversible circuit
for universal AQC, with stoquastic gate terms and a 5-local
stoquastic clock Hamiltonian). Finally, we know that
BStoqP ⊆ BQP, since StoqEvalAQC is in BQP by using

P

NP

BPP

BQP

MA

PostBQP

StoqMA

QMA

BStoqP

PostBPP

NN

MA

StoqMA

QMA

P

PostBPP
MA

P

NPNP

BPP

BStoqPBStBStB
NNNP

P

FIG. 4. Known relations between complexity classes relevant
for AQC. The BStoqP class defined here (Definition 8) lies in the
intersection StoqMA and BQP and includes BPP.

26MA has an alternative quantum definition as a restricted version
of QMA in which the verifier is a coherent classical computer
(Bravyi, DiVencenzo, Oliveira, and Terhal, 2008).

27We are indebted to Elizabeth Crosson for help in formulating the
StoqAQCEval problem, the BStoqP class, and working out the
relations of BStoqP to other complexity classes.

28As far as we know the related term StoqP was informally
introduced by Stephen Jordan in a talk presented at the AQC 2016
conference (Jordan, 2016a), showing that StoqP is not equal to BQP
unless BQP is in the third level of the polynomial hierarchy.

29Like MA, the class AM (Arthur Merlin) is a probabilistic
generalization of NP. See https://complexityzoo.uwaterloo.ca/
Complexity_Zoo for definitions of the complexity classes mentioned
here.
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the same proof that the adiabatic model in general can be
simulated by the circuit model.

A. Why it might be easy to simulate stoquastic Hamiltonians

In this section we summarize the complexity-theoretic
evidence obtained so far that suggests that the StoqAQC
setting is less powerful than universal quantum computation.
Let us start with a lemma that characterizes the “classicality”
of ground states of stoquastic Hamiltonians.

Lemma 3. The ground state jψi of a stoquastic Hamilto-
nian H can always be expressed using only real non-negative
amplitudes jψi ¼ P

x∈f0;1gn axjxi, where ax ≥ 0∀ x.

Proof. It follows directly from the stoquastic property
that the corresponding Gibbs density matrix ρ ¼
expð−βHÞ=Tr½expð−βHÞ� has non-negative matrix elements
in the computational basis for any β > 0. In particular, if H is
stoquastic then for sufficiently small β, 1 − βH has only non-
negative matrix elements. The largest eigenvalue of 1 − βH
corresponds to the ground state energy of H. Thus, by the
Perron-Frobenius theorem (see Sec. III.E.1) the ground state
of H can be chosen to have non-negative amplitudes. ▪
Consequently, if the Hamiltonian is stoquastic, a classical

probability distribution can be associated with the ground
state. This raises the question as to whether StoqAQC is a
model that is capable of quantum speedup over classical
algorithms. Following is the evidence regarding this
question.

(1) The ground state energy of the fully ferromagnetic
transverse field Ising model can be found to a given
additive error in polynomial time with a classical
algorithm on any graph, with or without a transverse
magnetic field (Bravyi and Gosset, 2016).

(2) Bravyi, DiVencenzo, Oliveira, and Terhal (2008)
showed that for any fixed k the stoquastic k-local
Hamiltonian is contained in the complexity class AM.
Thus, unless QMA ⊆ AM (which is believed to be
unlikely), the stoquastic k-local Hamiltonian is not
QMA complete.

(3) Bravyi, DiVencenzo, Oliveira, and Terhal (2008) also
showed that gapped StoqAQC can be simulated in
PostBPP, the complexity class described by a poly-
nomial-time classical randomized computer with the
ability to postselect on some subset of the bits after the
algorithm is run.30 That is, it suffices to call an oracle
for problems in PostBPP a polynomial number of
times to efficiently sample from the ground state of a
gapped stoquastic Hamiltonian.31

Suppose that StoqAQC could be used to perform
universal quantum computation. Since gapped Sto-
qAQC can be simulated in PostBPP, this implies that
SampBQP ⊆ SampPostBPP.32 In other words, this
implies that polynomial-time quantum algorithms can
be simulated classically in polynomial time using
postselection. This implies that PostBPP ¼ PostBQP
which in turn would collapse the polynomial hierarchy.
Thus it is unlikely that StoqAQC is universal for AQC.

(4) Bravyi and Terhal (2009) showed that adiabatic
evolution along a path composed entirely of stoquastic
frustration-free Hamiltonians (recall Definition 4) may
be simulated by a sequence of classical random walks,
i.e., is contained in BPP.

With this evidence for the potential limitations of stoquastic
Hamiltonians, the question arises if they are worthy of pursuit,
either theoretically or experimentally. However, it is important
to remember that the weakness of stoquastic Hamiltonians
arises when one assumes that they generate an evolution that
occurs in the ground state. Indeed, we will see in Sec. VI.C that
excited state stoquastic evolution can be as powerful as
universal AQC. Moreover, in the next section we review
counterexamples to the claim that stoquastic Hamiltonians
are necessarily easy to simulate using heuristic classical
algorithms.

B. Why it might be hard to simulate stoquastic Hamiltonians

A general theorem does not exist that rules out a
quantum speedup of StoqAQC over all possible classical
algorithms. However, it is often stated that Monte Carlo
simulations of StoqAQC do not suffer from the sign problem
and will therefore simulate StoqAQC without a slowdown.
Specifically, the conjecture is that if the Monte Carlo simu-
lation starts at s ¼ 0 in the equilibrium state, and if s changes
by a small amount ϵ from one step to the next, where ϵ is
polynomially small in the system size n, the inverse temper-
ature β, and the spectral gap Δ, then the Monte Carlo
simulation stays close to the equilibrium state along the path.
For sufficiently large β, this corresponds to following the
instantaneous ground state. In this section we review theo-
retical evidence that such a conjecture is not always true. We
focus on two of the most direct classical competitors to
StoqAQC: path integral quantum Monte Carlo (PI-QMC), and
diffusion quantum Monte Carlo (D-QMC).

1. Topological obstructions

Hastings and Freedman (2013) gave examples of StoqAQC
with a polynomially small eigenvalue gap, but where PI-QMC
takes an exponential time to converge. Loosely, the failure of
convergence was due to topological obstructions around

30See also Farhi and Harrow (2016), where gapped StoqAQC was
called stoquastic gapped adiabatic evolution.

31PostBPP, also known as BPPpath, contains NP. For example,
consider the Grover problem with two registers, a bit string x for the
input and a second register where fðxÞ is stored. Now if we pick x at
random and postselect on the second register being 1, we find a
marked item. PostBPP is known to be contained in the third level of
the polynomial hierarchy (Han, Hemaspaandra, and Thierauf, 1993).

32In sampling problems we are given an input x ∈ f0; 1gn, and the
goal is to sample (exactly or approximately) from some probability
distribution over poly(n)-bit strings. SampBQP and SampPostBPP
are the classes of sampling problems solvable on quantum computers
and probabilistic classical computers with postselection, respectively,
to within ϵ error in total variation (or trace-norm) distance, in time
polynomial in n and 1=ϵ (Aaronson, 2010).
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which the worldlines (trajectories in imaginary time) can get
tangled.
The simplest of the examples can be understood intuitively

as follows. A sombrerolike potential is constructed for a single
particle with a deep circular minimum of radius r. The
worldline of the particle in PI-QMC with closed boundary
conditions is some closed path that follows this circle in
imaginary time. Because of the depth of the potential at the
minimum the distribution of trajectories has very small
probability to include any point with radius larger than r
and it takes an exponential time in the winding number to
transition from one winding number sector to another.
Therefore, if an appropriate dimensionless combination of
the radius r or the mass of the particle is changed sufficiently
fast then PI-QMC fails to equilibrate. At the same time it can
be shown that for this example the gap closes polynomially
and so one expects that adiabatic evolution requires only
polynomial time to find the ground state.
While this example uses winding numbers to construct a

protocol for which PI-QMC takes exponential time to equili-
brate, PI-QMC can still find the ground state. To observe a
more dramatic effect where not only equilibration is hampered
but also the probability of finding the ground state
is low, one can introduce stronger topological effects and
additionally exploit the discrepancy between L1- and L2-
normalized wave functions. This was first done in the
“bouquet of circles” example introduced by Hastings and
Freedman (2013), which shows that PI-QMC can fail to
converge even when using open boundary conditions. The
example was designed so that the majority of the amplitude ψ
lies within an expander graph, although the majority of the
probability jψ j2 does not. Because the end points of the
wordlines are distributed according to ψ and not jψ j2, this
effectively “pins” them to the expander graph. This pinning
means that even though the worldline is in principle open, the
worldline is nevertheless prevented from changing its topo-
logical sector within the bouquet of circles. This then causes
failure of convergence.
A more general method using perturbative gadgets was

explained by Hastings and Freedman (2013) that allows one to
map between continuous variables and spins and applies to all
the examples given there.

2. Nontopological obstructions

Diffusion Monte Carlo algorithms should not be affected by
topological obstructions that depend on closed boundary
conditions, since they do not exhibit periodicity in the
imaginary-time direction. Rather than use topological obstruc-
tions, it is possible to rely entirely on the discrepancy between
L1 and L2 normalization to design examples where
Monte Carlo methods have differing convergence from
AQC. This discrepancy was used by Jarret, Jordan, and
Lackey (2016) to ensure that the walkers in a D-QMC
algorithm never “learn” about a potential well that contains
the solution, causing D-QMC to take exponential time to
converge. Since the gap for the adiabatic process is large, QA
takes only polynomial time.
Let HðsÞ be some stoquastic Hamiltonian acting on a

Hilbert space whose basis states can be equated with the

vertices V of some graph. Let ψsðxÞ∶ V ↦ C denote the
ground state of HðsÞ. Define probability distributions

pð1Þ
s ðxÞ ¼ ψsðxÞ=

P
y∈V ψsðyÞ and pð2Þ

s ðxÞ ¼ ψ2
sðxÞ. The sto-

quasticity of HðsÞ ensures that ψ sðxÞ ≥ 0, so that pð1Þ
s ðxÞ is a

valid probability distribution.
D-QMC algorithms perform random walks designed to

ensure that a population of random walkers converges to

pð1Þ
s ðxÞ. However, in exponentially large Hilbert spaces there

can be vertices such that the distribution associated with the

L2-normalized wave function pð2Þ
s ðxÞ is polynomial, but the

distribution associated with the L1-normalized wave function

pð1Þ
s ðxÞ is exponentially small. The idea behind the examples

by Jarret, Jordan, and Lackey (2016) is to exploit this
discrepancy to design polynomial-time stoquastic adiabatic
processes that the corresponding D-QMC simulations will fail
to efficiently simulate.
The main example given by Jarret, Jordan, and Lackey

(2016) is the stoquastic Hamiltonian HðsÞ ¼ ð1=nÞ½Lþ
bðsÞW� − cðsÞP, where L is the graph Laplacian of the n-
bit hypercube, W is the Hamming weight operator (i.e.,
Wjxi ¼ jxjjxi where jxj is the Hamming weight of the bit
string x), and P ¼ j0 � � � 0ih0 � � � 0j. In terms of Pauli matrices
this Hamiltonian can be written, up to an overall constant, as

HðsÞ ¼ −
1

n

Xn
j¼1

�
Xj þ

1

2
bðsÞZj

�
− cðsÞP: ð101Þ

The schedules bðsÞ and cðsÞ are

bðsÞ ¼
�
2sb;

b;
cðsÞ ¼

�
0; s ∈ ½0; 1=2Þ;
ð2s − 1Þc; s ∈ ½1=2; 1�.

ð102Þ

For s ∈ ½0; 1=2Þ this is a Hamiltonian of n noninteracting
qubits whose gap is easily seen to be ð2=nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðsb=2Þ2

p
,

minimized at s ¼ 0 where it equals 2=n. The ground state is
given by jψðθÞi⊗n, where jψðθÞi ¼ cosðθ=2Þj0i þ
sinðθ=2Þj1i and θ ¼ tan−1ð2=sbÞ. For s ∈ ½1=2; 1� it can be
shown that the minimum gap is attained at s ¼ 1=2, where it
equals 1=

ffiffiffiffiffiffi
2n

p þOðn−3=2Þ. Thus the overall minimum gap is
polynomial (2=n) and the StoqAQC process converges to the
ground state j0 � � � 0i in polynomial time. By choosing b so
that at s ¼ 1 we have cosðθ=2Þ ¼ 1 − 1=4n, it is easy to show
from the analysis of the noninteracting problem that the

probability of ending up in the ground state is pð2Þ
s¼1ð0 � � � 0Þ ¼

cos2nðθs¼1=2Þ → e−1=2 in the limit n → ∞.
On the other hand, for the noninteracting problem (when

s ∈ ½0; 1=2Þ) the D-QMC process33 samples from the distri-

bution pð1Þ
s ðxÞ ¼ sinðθ=2Þjxj cosðθ=2Þn−jxj=Zs, where

Zs¼
X

x∈f0;1gn
sinðθ=2Þjxj cosðθ=2Þn−jxj ¼ ½sinðθ=2Þþcosðθ=2Þ�n;

33Here D-QMC refers to the “substochastic Monte Carlo” algo-
rithm introduced by Jarret, Jordan, and Lackey (2016).
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so that for large n we have Z1 ≈ ð1þ 1=
ffiffiffiffiffiffi
2n

p Þn → e
ffiffiffiffiffiffi
n=2

p
for

the same choice of b. Thus, for D-QMC the probability of
being in the ground state at s ¼ 1=2 is

pð1Þ
s¼1=2ð0 � � � 0Þ ¼ cosnðθs¼1=2Þ=Zs¼1 → e−1=4e−

ffiffiffiffiffiffi
n=2

p
.

Since at s ¼ 1=2 the randomwalkers that diffuse in theD-QMC
process have a probability to be at the all-zeros string that is of

order e−
ffiffiffiffiffiffi
n=2

p
, with high likelihood, no walkers will land on the

all-zeros string until the number of time steps times the number

of walkers approaches e
ffiffiffiffiffiffi
n=2

p
. Until this happens it is impos-

sible for the distribution of walkers to be affected by the change
in the potential at the all-zeros string that is occurring from
s ¼ 1=2 to 1; no walkers have landed there, and the D-QMC
algorithm has therefore never queried the value of the potential
at that site. Only after allowing for this exponential cost, and by
appropriately choosing c, does the D-QMC algorithm find the
ground state with high probability.34

C. QMA-complete problems and universal AQC using stoquastic
Hamiltonians with excited states

Our definition of StoqAQC (Definition 6) stipulates that the
computation must proceed in the ground state. It turns out that
if this condition is relaxed, computation with stoquastic
Hamiltonians is as powerful as AQC, i.e., it is universal.
Here we review a construction by Jordan, Gosset, and Love
(2010) of a 3-local stoquastic Hamiltonian that, by allowing
for excited state evolution, is both QMA complete and
universal for AQC.
We start with the QMA-complete Hamiltonian introduced

in Sec. V.D that can be written as

HZZXX ¼
X
i

diXi þ hiZi þ
X
i≤j

JxijXiXj þ JzijZiZj; ð103Þ

where di, hi, Jxij, and J
z
ij are arbitrary real coefficients. The key

idea is to eliminate the negative matrix elements in each term.
Toward this end the Hamiltonian is written as

HZZXX ¼ −
X
k

αkTk; ð104Þ

where Tk ∈ f�Xi;�Zi;�XiXj;�ZiZjg and such that
αk > 0. For an n-qubit system, the operators Tk are repre-
sented by 2n × 2n symmetric matrices with entries taking
values þ1;−1, and 0. We use the regular representation of the
Z2 group to make the replacement

1 →

�
1 0

0 1

�
; −1 →

�
0 1

1 0

�
; 0 →

�
0 0

0 0

�

ð105Þ

in Tk to define a new operator ~Tk. The matrix representation of
~Tk is of size 2nþ1 × 2nþ1, and since the original Tk was either

1-local or 2-local acting on n qubits, we can interpret ~Tk as
being 2-local or 3-local acting on nþ 1 qubits. Note that Tk is
such that it only has one nonzero entry per row and column;
hence with the substitution in Eq. (105), the ~Tk’s are
permutation matrices. We can write the following
Hamiltonian acting on nþ 1 qubits:

~HZZXX ¼ −
X
k

αk ~Tk ð106Þ

which is a linear combination of permutation matrices with
negative coefficients. This makes ~HZZXX a 3-local stoquastic
Hamiltonian. We can write it as

~HZZXX ¼ HZZXX ⊗ j−ih−j þ H̄ZZXX ⊗ jþihþj; ð107Þ

where H̄ZZXX ¼ −
P

kαkjTkj and jTkj is the entrywise abso-
lute value of Tk. To see why this is the case, first consider a
positive element ðTkÞij. Then

−αkðTkÞij ⊗ j−ih−j − αkðTkÞij ⊗ jþihþj ¼ −αkðTkÞij ⊗ 1

corresponding to the first replacement in Eq. (105). For a
negative element, we have

−αkðTkÞij ⊗ j−ih−j þ αkðTkÞij ⊗ jþihþj ¼ −αkðTkÞij ⊗ σx

corresponding to the second replacement in Eq. (105). The
spectrum of ~HZZXX separates into two sectors L�. The sector
L− is spanned by jεji ⊗ j−i, where jεji are the eigenstates of
HZZXX, while the sector Lþ is spanned by jε̄ji ⊗ jþi, where
jε̄ji are the eigenstates of H̄ZZXX. Because the Hamiltonian
does not couple the two sectors (there are no interactions that
take the ancilla qubit from j�i to j ∓i), a closed-system
evolution initialized in the L− sector will remain in that sector.
Because the spectrum in the L− sector is identical to that of

HZZXX, which is capable of universal adiabatic quantum
computation, universal adiabatic quantum computation can
be performed in the L− sector. However, the lowest energy
state in L− may not necessarily be the ground state of ~HZZXX.
Therefore, this establishes universal AQC using a stoquastic
Hamiltonian only if we do not restrict ourselves to the ground
state of the Hamiltonian. Attempting to make the lowest
energy state in L− be the ground state requires introducing a
sufficiently large term proportional to 1 ⊗ jþihþj to the
Hamiltonian ~HZZXX, but such a term would make the new
Hamiltonian nonstoquastic since it would introduce positive
off-diagonal elements. Therefore this method does not estab-
lish universal adiabatic quantum computation using the
ground state of a stoquastic Hamiltonian.

D. Examples of slowdown by StoqAQC

It should not come as a surprise that AQC with an arbitrary
final Hamiltonian, which is essentially a black-box approach,
does not guarantee quantum speedups. It can be vulnerable to
the same sorts of locality traps confronted by heuristic
classical algorithms such as simulated annealing.34For c ¼ 2 one finds that pð1Þ

s¼1ð0 � � � 0Þ ¼ 1=2þOðn−1=2Þ.
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A slowdown, or failure of AQC to provide a speedup, is a
scenario wherein a more efficient classical algorithm is known.
All the known examples that fall into this category arise when
the gap closes “too fast” in the problem size. However, it is
important to note that adiabatic theorems provide only upper
bounds on run time, not lower bounds. Thus, an exponentially
small gap does not strictly imply an exponentially long run
time. The inverse gap is often treated as a proxy for run time, but
a claim such as an equal scaling of the inverse gap and the run
time does not hold as a general theorem.
With this caveat in mind, in this section we review such

“small-gap” examples in increasing order of generality or
difficulty of analysis, which all arise in the StoqAQC context.
However, we must first note another important caveat.
Namely, in some of the examples we present numerical
evidence that is based, in necessity, on finite size calculations.
One is then often tempted to extrapolate such evidence to the
asymptotic scaling. Of course, any such extrapolations based
purely on numerics are conjectures. For example, a claim of
exponential scaling can never be proven based on numerics
alone, as any finite set of data points can always be perfectly
fit by a polynomial of sufficiently high degree. Nevertheless,
numerics-driven conjectures about scaling can be quite useful,
especially if supported by other, analytical arguments.
Subsequently, we will see in Sec. VII that there are various

methods for circumventing slowdowns, e.g., via the intro-
duction of nonstoquastic terms.

1. Perturbed Hamming weight problems with exponentially
small overlaps

The plain Hamming weight problem is described by

HHWðsÞ ¼ ð1 − sÞ 1
2

X
i

ð1 − σxi Þ þ s
X
x

jxjjxihxj: ð108Þ

Its cost function is simply the Hamming weight jxj of the
binary bit string x, which is trivially minimized at x ¼ 0n.
Consider the following perturbation of the plain Hamming
weight problem (van Dam, Mosca, and Vazirani, 2001):

hðxÞ ¼
� jxj if jxj < n;

−1 if jxj ¼ n.
ð109Þ

This is a toy problem that is designed to be hard for classical
algorithms based on local search: its global optimum lies in a
narrow basin, while there is a local optimum with a much
larger basin. An algorithm such as simulated annealing with
single spin updates would require exponential time to find the
global minimum.
Let us write the corresponding StoqAQC Hamiltonian to

make the perturbation explicit

HðsÞ ¼ HHWðsÞ − sðnþ 1Þj1nih1nj; ð110Þ

where j1ni is the all-one state. Denote the instantaneous
eigenstates of HHWðsÞ by fjviðsÞig (v0 denotes the ground
state). Note that the overlap of the all-one state with the
instantaneous ground state of the plain Hamming weight
algorithm is always exponentially small:

h1njv0ðsÞi ≤
1ffiffiffiffiffi
2n

p : ð111Þ

We show that this fact causes the adiabatic algorithm as
defined in Eq. (110) to take exponential time because it leads
to an exponentially small gap.
Define a matrix AðsÞ with elements

Aij ¼ hviðsÞjHðsÞjvjðsÞi: ð112Þ

Note that Að0Þ is diagonal and A00ð0Þ ¼ 0, equal to the
ground state eigenvalue. Also Að1Þ is diagonal, but now
A2n−1;2n−1ð1Þ ¼ −1 is equal to the ground state eigenvalue.
Define a matrix B in the same basis as

BijðsÞ ¼

8>>><
>>>:

A00ðsÞ i ¼ j ¼ 0;

0 i ¼ 0; j > 0;

0 i > 0; j ¼ 0;

AijðsÞ otherwise:

ð113Þ

The matrix B always has A00 as an eigenvalue. By con-
struction, we know that at s ¼ 1 the matrix B has −1 as its
ground state eigenvalue (located in the 2n−1 × 2n−1 subma-
trix). Because the matrix transforms continuously between
these two extremes, there cannot be a jump in the ground state
eigenvalue, so there must be a critical value of s, which we
denote by sc, where B has a vanishing gap.
The optimal matching distance between A and B expresses

how close their eigenvalue spectra are

dðA; BÞ ¼ min
π

max
1≤j≤2n

jλj − μπðjÞj; ð114Þ

where π denotes a permutation. Since A and B are
Hermitian, this is upper bounded by kA − Bk2 (Bhatia,
1997). The matrix A − B only has nonzero entries
ðA − BÞ0;j>0 ¼ A0;j>0 and ðA − BÞj>0;0 ¼ Aj>0;0 ¼ A�

0;j>0,
with A0;j>0 ¼ −sðnþ 1Þhv1ðsÞj1nih1njvjðsÞi. Therefore,

kA − Bk2

¼ sðnþ 1Þjhv1ðsÞj1nij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2n−1
j¼1

h1njvjðsÞihvjðsÞj1ni
vuut

¼ sðnþ 1Þjhv1ðsÞj1nij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jh1njv0ðsÞij2

q
≤ sðnþ 1Þjhv1ðsÞj1nij ≤

sðnþ 1Þffiffiffiffiffi
2n

p : ð115Þ

Thus, the gap of A [and hence of HðsÞ] is always upper
bounded by the gap of B plus twice kA − Bk2. Since at s ¼ sc
the gap of B is zero, it follows that the gap of HðscÞ is ≤
scðnþ 1Þ=

ffiffiffiffiffiffiffiffiffi
2n−2

p
(van Dam, Mosca, and Vazirani, 2001).

Therefore, the exponentially small overlap between the
unperturbed instantaneous ground state and the perturbed
final ground state results in the adiabatic algorithm requiring
exponential time to reach the final ground state. Informally,
this can also be viewed as the inability of local quantum search
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(fluctuations induced by the local initial Hamiltonian) to
explore the entire (nonlocal) energy landscape effectively.

2. 2-SAT on a ring

In this section we review the “2-SAT on a ring” problem
introduced in the seminal work of Farhi et al. (2000), which
launched the field of AQC. This example is instructive
because of its use of the Jordan-Wigner and Fourier trans-
formation techniques and is also of historical interest. It also
serves to illustrate that even a polynomially small gap does not
guarantee a quantum speedup. We thus review it in detail.
Consider an n-bit SAT problem with n clauses. Each clause

acts only on adjacent bits, i.e., the clause Cj acts only on bits j
and jþ 1, where we identify bit nþ 1 with bit 1. Let each
clause be of only two forms: “agree” clauses where 00 and 11
are satisfying assignments, and “disagree” clauses where 01
and 10 are satisfying assignments. Since an odd number of
satisfied disagree clauses means that the first bit of the first
disagree clause is the opposite of the second bit of the last
disagree clause, yet bits 1 and nþ 1 must agree, there must be
an even number of disagree clauses in order for a satisfying
assignment to exist. The classical computational cost of
finding a satisfying assignment is at most n: given the list
of clauses, a satisfying assignment is found (assuming an even
number of disagree clauses) simply by going around the ring
and satisfying each clause one at a time. Note that if fwigni¼1 is
a satisfying assignment then so is f¬wigni¼1.
Let us now define the final Hamiltonian H1 ¼

P
n
i¼1 HCi

associated with the SAT problem, where each clause is
represented by

HCi
¼ 1

2
½1 − ð−1Þxiσziσziþ1�;

xi ¼ 0 ð1Þ if Ci is an agree ðdisagreeÞ clause: ð116Þ
The ground states of HP are then given by j0i1 ⊗n

i¼2 jwiii and
⊗n

i¼1 j¬wiii, where wi ¼ ⨁i−1
j¼1xj (i ≥ 2 and addition modulo

2). It is possible to gauge away all the disagree clauses. To see
this, let U be the unitary transformation defined such that

Ujzii ¼
� j¬zii if wi ¼ 1;

jzii if wj ¼ 0.
ð117Þ

Under this unitary transformation we have

H0
1 ¼ UH1U† ¼

X
i

1

2
ð1i − σziσ

z
iþ1Þ; ð118Þ

i.e., the new final Hamiltonian is a sum of just agree clauses.
Note that this unitary transformation requires us to know the
ground state, but H0

1 and H1 are isospectral, so we can use it
for convenience in our gap analysis. The adiabatic computa-
tion procedure will be governed by the following time-
dependent Hamiltonian:

HðsÞ ¼ ð1 − sÞH0 þ sH0
1; 0 ≤ s ≤ 1; ð119Þ

with the initial HamiltonianH0 ¼
P

i 1i − σxi . We diagonalize
HðsÞ in order to find its ground state gap. First, define the
negation operator G ¼ Q

n
i¼1 σ

x
i such that

Gð⊗n
i¼1 jziiÞ ¼⊗n

i¼1 j¬zii; ð120Þ

which commutes with HðsÞ. The uniform superposition state,
which is the ground state of Hð0Þ, is invariant under G, i.e., it
has eigenvalue þ1 under G. Therefore, the unitary dynamics
will keep the state in the sector with G ¼ þ1 if it starts in the
ground state of Hð0Þ. Let us then write HðsÞ purely in the
G ¼ þ1 sector. Second, define the Jordan-Wigner transfor-
mation

bj ¼ σx1σ
x
2 � � � σxj−1σ−j ; ð121aÞ

b†j ¼ σx1σ
x
2 � � � σxj−1σþj ; ð121bÞ

where σ�j ¼ ð1=2Þðσzj � iσyjÞ. These are fermionic operators
that satisfy

fbj; bkg ¼ 0 ðamounts to fσ−j ; σ−k g ¼ 0Þ; ð122aÞ

fbj; b†kg ¼ δjk ðamounts to fσ−j ; σþk g ¼ δjkÞ: ð122bÞ

Note that

b†jbj ¼ 1
2
ð1j − σxjÞ; j ¼ 1;…; n; ð123aÞ

ðb†j − bjÞðb†jþ1 þ bjþ1Þ ¼ σzjσ
z
jþ1; j ¼ 1;…; n − 1;

ð123bÞ

ðb†n − bnÞðb†1 þ b1Þ ¼ −Gσznσz1: ð123cÞ

In order to make Eqs. (123b) and (123c) consistent in the
G ¼ þ1 sector, we take bnþ1 ≡ −b1. Using this, we have

HðsÞjG¼þ1 ¼
Xn
j¼1

�
2ð1 − sÞb†jbj

þ s
2
½1j − ðb†j − bjÞðb†jþ1 þ bjþ1Þ�

�
. ð124Þ

Third, since this Hamiltonian is invariant under translations
j ↦ jþ 1, define Fourier operators βp,

βp ¼ 1ffiffiffi
n

p
Xn
j¼1

eiπpj=nbj; p ¼ �1;�3;…;�ðn − 1Þ;

ð125Þ

where for simplicity it is assumed that n is even. Equivalently,

bj ¼
1ffiffiffi
n

p
X

p¼�1;…

e−iπpj=nβp; ð126Þ

where we used the fact that
P

p¼�1;… eiπpðj−j0Þ=n ¼ nδj;j0 .
Furthermore, note that
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fβ2a−1; β2b−1g ¼ 1

n

X
j;j0

eiπðð2a−1Þjþð2b−1Þj0Þ=nfbj; bj0 g

¼ 0; ð127aÞ

fβ2a−1; β†2b−1g ¼ 1

n

X
j;j0

eiπðð2a−1Þj−ð2b−1Þj0Þ=nfbj; b†j0 g

¼ 1

n

Xn
j¼1

e2πiða−bÞ=n ¼ δa;b; ð127bÞ

so the set fβpg comprises valid fermionic operators. Writing
the Hamiltonian in terms of this set, we have

HðsÞ ¼
X

p¼1;3;…

�
2ð1 − sÞðβ†pβp þ β†−pβ−pÞ

þ s

�
1 − cos

�
πp
n

�
ðβ†pβp − β−pβ

†
−pÞ

þi sin

�
πp
n

�
ðβ†−pβ†p − βpβ−pÞ

��
ð128aÞ

≡ X
p¼1;3;…

ApðsÞ. ð128bÞ

Now thatHðsÞ has finally been written as a sum of commuting
operators (½Ap; Ap0 � ¼ 0 for p ≠ p0), we can diagonalize each
summand separately. For a given p, let us denote by jΩpi the
state that is annihilated by βp and β−p, i.e., βpjΩpi ¼
β−pjΩpi ¼ 0. Note that Apðs ¼ 0ÞjΩpi ¼ 0, so jΩpi is the
ground state of Ap at s ¼ 0 (recall that we already knew that
the ground state energy at s ¼ 0 was zero). Let jΣpi ¼
β†−pβ

†
pjΩpi. ApðsÞ keeps states in the subspace spanned by

jΩpi and jΣpi in the same subspace; the initial state is in this
subspace, so we can restrict our attention to it. Let us write
ApðsÞ in the fjΩpi; jΣpig basis,

ApðsÞ ¼

0
B@ sþ s cos

�
πp
n

�
is sin

�
πp
n

�
−is sin

�
πp
n

�
4 − 3s − s cos

�
πp
n

�
1
CA: ð129Þ

Diagonalizing this, we find for the energies,

E�
p ðsÞ¼2−s�

�
ð2−3sÞ2þ4sð1−sÞ

�
1−cos

�
πp
n

���
1=2

:

ð130Þ

The instantaneous ground state energy of HðsÞ is thus given
by

P
p¼1;3;… E−

pðsÞ. The first excited state energy is given by
Eþ
1 ðsÞ þ

P
p¼3;… E−

pðsÞ. The energy gap ΔðsÞ is therefore
given by

ΔðsÞ¼Eþ
1 ðsÞ−E−

1 ðsÞ

¼2

�
ð2−3sÞ2þ4sð1−sÞ

�
1−cos

�
πp
n

���
1=2

: ð131Þ

The minimum occurs at

s� ¼ 2ð2þ cos π=nÞ
5þ 4 cos π=n

→ 2=3

as n → ∞. Therefore, the minimum gap is given by

Δðs�Þ ¼ 4





 sin πn




 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5þ 4 cos π=n
p →

4π

3n
; ð132Þ

which implies a polynomial run time for the adiabatic
algorithm. As mentioned, the classical computational cost
of finding a satisfying assignment is at most n. Therefore,
despite the polynomially small gap in this example, there is no
quantum speedup. This illustrates that a StoqAQC slowdown
need not necessarily be associated with an exponentially
small gap.

3. Weighted 2-SAT on a chain with periodicity

We now discuss another problem, proposed by Reichardt
(2004), that combines 2-SAT with an exponential slowdown
of StoqAQC. It can thus be viewed as exhibiting aspects of the
two previous problems we discussed.
Consider a weighted 2-SAT problem on a chain with agree

clauses between bits i; iþ 1 for i ¼ 1;…; N − 1 with weights

Ji ¼
8<
:

w if ⌈ in⌉ is odd;

1 if ⌈ in⌉ is even;
ð133Þ

where n is the period and w > 1. As for the previous 2-SAT
problem, we can map this to a spin chain with ferromagnetic
couplings with strength given by Ji. The adiabatic
Hamiltonian is given by

HðsÞ ¼ −ð1 − sÞ
XN
i¼1

σxi − s
XN−1

i¼1

Jiσ
z
iσ

z
iþ1: ð134Þ

This chain has coefficients that alternate between w and 1 in
sectors of size n each, with the bþ 1 odd-numbered sectors
being “heavy” (Ji ¼ w > 1), b even-numbered sectors being
“light” (Ji ¼ 1), and where the total number of sectors is
ðN − 1Þ=n ¼ 2bþ 1. Since the chain is ferromagnetic, the
ground state of Hð1Þ is trivially the all-0 or all-1 computa-
tional-basis state. The problem is thus classically easy and can
be solved by inspection or in time OðNÞ by a heuristic
classical algorithm such as simulated annealing, by simply
traversing the chain and updating one spin at a time.
Note that at s ¼ 0 there is a unique ground state, while at

s ¼ 1 the ground state is doubly degenerate. Therefore, the
relevant quantum ground state gap Δ is not the gap to the first
excited state (since at the end of the evolution, this merges
with the ground state), but to the second excited state.
It turns out this gap is exponentially small in the sector size

n across a constant range s ∈ (1=ð1þ wÞ; 1=2). Moreover,
there are exponentially many (in

ffiffiffiffi
N

p
) exponentially small

excitations above the ground state for n ∼
ffiffiffiffi
N

p
.
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More precisely, let μw ¼ sw=ð1 − sÞ. Theorem 4 in
Reichardt (2004) states the following:

(1) For any fixed s > 1=ð1þ wÞ, i.e., μw < 1, HðsÞ has
one eigenvalue only OðμnwÞ above the ground state
energy. This means that the gap Δ is exponentially
decreasing with the sector size n.

(2) For s ∈ ð1=ð1þ wÞ; 1=ð1þ ffiffiffiffi
w

p Þ� (i.e., again μw < 1),
HðsÞ has 2bþ1 − 1 eigenvalues only OðbμnwÞ above the
ground state energy. This means that there are ex-
ponentially many (in the number of odd sectors bþ 1)
excited states that likewise have an exponentially
small (in n) gap from the ground state. Note that
b ¼ ½ðN − 1Þ=nþ 1�=2, so b ∼

ffiffiffiffi
N

p
when n ∼

ffiffiffiffi
N

p
.

(3) For s∈ ½1=ð1þ ffiffiffiffi
w

p Þ;1=2Þ, where μ1 ¼ s=ð1 − sÞ > 1,
HðsÞ has 2bþ1 − 1 eigenvalues Oðbμ−n1 Þ above the
ground state energy. This again means an exponen-
tially large number (in b) of excited states with an
exponentially small (in n) gap.

The proof uses a Jordan-Wigner transformation to diagonalize
HðsÞ, similarly to the technique in Sec. VI.D.2. The spectral
gaps of the 2N × 2N matrix HðsÞ are the square roots of the
eigenvalues of an N × N symmetric, tridiagonal matrix. The
Sturm sequence of the principal leading minors of this matrix
is then analyzed to bound the eigenvalue gaps of HðsÞ.
Why might we expect this problem to be hard for the

adiabatic algorithm?Within any given light or heavy sector, the
problem (at fixed s) is that of a uniform transverse field Ising
chain. Consider the thermodynamic limit N ≫ 1, and also let
n ≫ 1. In this limit the transverse field Ising chain encounters a
phase transition separating the disordered phase and the
ordered phase when 1 − s ¼ sJi (Sachdev, 2001), i.e., at
s ¼ 1=ð1þ JiÞ. [The boundary of the chain adds only Oð1Þ
energy, so it does not impact this intuitive argument in the
thermodynamic limit.] This means that the heavy sectors
encounter the phase transition at s ¼ 1=ð1þ wÞ whereas the
light sectors encounter the phase transition at s ¼ 1=2, i.e., the
light sectors order after the heavy ones. At s ¼ 1=ð1þ wÞ each
heavy sector orders in either the all-0 or all-1 state, and different
heavy sectors are separated by light sectors that have not
ordered yet. Since the initial Hamiltonian generates only local
spin flips, the algorithm is likely to get stuck in a localminimum
with a domain wall in one or more disordered sectors, if run for
less than exponential time in n. This mechanism in which large
local regions order before the whole is well known in
disordered, geometrically local optimization problems, gives
rise to a Griffiths phase (Fisher, 1995).

4. Topological slowdown in a dimer model or local Ising ladder

Another interesting example of a local spin model that leads
StoqAQC astray was given by Laumann et al. (2012). They
showed that a translation-invariant quasi-1D transverse field
Ising model with nearest-neighbor interactions only, the
ground state of which is readily found by inspection, results
in exponentially long run times for StoqAQC. The model can
be understood as either a dimer model on a two-leg ladder of
even length L or, using a duality transformation, a two-leg
frustrated Ising ladder of the same length in a uniform
magnetic field, the ground states of which map onto the
dimer states. The frustrated Ising ladder Hamiltonian is

H1 ¼ −
X
hi;ji

Jijσ
z
iσ

z
j − K

X
i∈upper

σzi þ
1

2
U

X
i∈lower

σzi ; ð135Þ

where upper and lower refer to the legs of the ladder, Jij ¼
−K for the upper-leg couplings and Jij ¼ K for all other
(lower-leg and rungs) couplings.
Quantum dynamics is introduced via a standard initial

Hamiltonian −ΓðtÞPi σ
x
i , where Γð0Þ ≫ kH1k and

ΓðtfÞ ¼ 0. The dimer model exhibits a first-order quantum
phase transition with an exponentially small gap when
K ≫ U, which is inherited by the frustrated Ising ladder
model. Namely, the system prefers the sector with exponen-
tially many ground states, while any degeneracy-lifting
interaction favors another containing only Oð1Þ states.
StoqAQC selects the wrong sector, tunneling out of which
becomes exponentially slow as Γ is reduced.
More specifically, for K ≫ U, the Hilbert space is spanned

by an orthonormal basis of hard core dimer coverings
(“perfect matchings”) of the ladder. These fall into three
sectors which are topological in that they are not connected by
any local rearrangement of the dimers. The sectors are labeled
by a winding number w, the difference between the number of
dimers on the top and bottom rows (on any fixed plaquette).
The model assigns extensive energy ∝ L to every state in the
w ¼ 0 sector while leaving the two staggered states w ¼ �1
as ground states with energy 0. On the other hand, at large Γ
(strong transverse field) the w ¼ 0 sector is favored.
Intuitively, slowly turning the transverse field off by reducing
Γ does not help change the topological sector since any off-
diagonal term in the dimer Hilbert space involving only a
finite number of rungs in the ladder leaves the winding
number w invariant. This is depicted in Fig. 5. Numerical
analysis of the Ising ladder confirms this picture by revealing
that the gap is exponentially small in L when K > U. The
critical point is found to be at Γc ≈ U=bþ U2=4Kb3, where
b ≈ 0.6 (from exact diagonalization numerics).

E

U L

0
c

FIG. 5. Energy spectrum of the dimer model on an even length
periodic ladder, with the dimer configurations illustrated. The
w ¼ �1 states are at energy E ¼ 0, while the w ¼ 0 sector splits
into a band for Γ > 0. For sufficiently large Γ, the w ¼ 0 sector
contains the ground state of the system. An unavoided level
crossing (first-order quantum phase transition) occurs at Γ ¼ Γc,
which is responsible for the quantum slowdown. From Laumann
et al., 2012.
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5. Ferromagnetic mean-field models

The quantum ferromagnetic p-spin model is given by

H ¼ −
1

np−1

�Xn
i¼1

σzi

�p

− Γ
Xn
i¼1

σxi : ð136Þ

By inspection it is clear that when p is even, the ground state
at Γ ¼ 0 is either of the two fully aligned ferromagnetic states,
while when p is odd, the unique ground state at Γ ¼ 0 is the
fully aligned spin-down state. As Γ is tuned from a large value
toward zero, the system encounters a first-order phase
transition for p > 2. This can be readily shown by employing
the Suzuki-Trotter decomposition and the static approxima-
tion (Chayes et al., 2008; Krzakala et al., 2008; Jörg,
Krzakala, Kurchan et al., 2010; Suzuki, Inoue, and
Chakrabarti, 2013) to calculate the partition function Z in
the large n limit, where

Z ¼
Z

dme−βnFðβ;Γ;mÞ: ð137Þ

Here β is the inverse temperature, m is the Hubbard-
Stratonovich field (Hubbard, 1959), and F is the free energy
density given by

F¼ðp−1Þmp−
1

β
log

h
2cosh

�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2þp2m2p−2

q �i
: ð138Þ

The dominant contribution to F comes from the saddle point
of the partition function Z, which provides consistency
equations for the field m:

m ¼ pmp−1 tanh ðβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ p2m2ðp−1Þp

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ p2m2ðp−1Þp : ð139Þ

Solving Eq. (139) numerically for p > 2 reveals a disconti-
nuity in the value of m that minimizes the free energy as Γ is
tuned through the phase transition point. At this critical point,
the free energy exhibits a degenerate double-well potential,
and an instantonic calculation on this potential gives an
exponentially small energy gap with system size (Jörg,
Krzakala, Kurchan et al., 2010).

6. 3-Regular 3-XORSAT

All the problems discussed so far were amenable to a
classical solution “by inspection” (i.e., the solution is obvious
from the form of the cost function). Some problems were even
easy for classical heuristic algorithms performing a local
search. We now discuss a problem that is nontrivial in this
respect, i.e., classically yields only in polynomial time to a
tailored approach.
In 3-XORSAT, each clause involves 3 bits, and there are

M clauses and n bits in total. A clause is satisfied if the sum
of the 3 bits (mod 2) is a specified value; it can be 0 or 1
depending on the clause. For 3-regular 3-XORSAT, every
bit is in exactly three clauses and M ¼ n. This problem is
associated with a spin-glass phase but is “glassy without
being hard to solve” (Franz et al., 2001; Ricci-Tersenghi,

2010): the problem of finding a satisfying assignment can
be solved in polynomial time using Gaussian elimination
because the problem involves only linear constraints (mod 2)
(Haanpaa et al., 2006).
A final Hamiltonian involving n spins can be written such

that each satisfied clause gives energy 0 and each unsatisfied
clause gives energy 1

H1 ¼
Xn
c¼1

�
1 − Jcσ

z
i1;c

σzi2;cσ
z
i3;c

2

�
: ð140Þ

Here the index ðik; cÞ denotes the 3 bits associated with
clause c, and Jc ∈ f�1g depending on whether the clause
is satisfied if the sum of its bits (mod 2) is 0 or 1. The
StoqAQC Hamiltonian is then given as usual by HðsÞ ¼
−ð1 − sÞPn

i¼1 σ
x
i þ sH1. The median minimum gap for

random 3-regular 3-XORSAT has numerically been shown
to be exponentially small in the system size up to n ¼ 24

(Jörg, Krzakala, Semerjian, and Zamponi, 2010) and n ¼ 40

(Farhi et al., 2012) [using both the quantum cavity method
(Krzakala et al., 2008; Laumann, Scardicchio, and Sondhi,
2008) and QMC simulations], with a first-order quantum
phase transition at s ¼ 1=2. Thus, the numerical evidence
suggests that StoqAQC takes exponential time to solve
this problem. The same is true for classical heuristic
local-search algorithms such as WALKSAT (Guidetti and
Young, 2011).
Note that since the Hamiltonian gap is not a thermody-

namic quantity, one must be careful not to automatically
associate a first-order quantum phase transition with an
exponentially small gap. While the examples presented in
this review agree with this rule [for additional examples, see
Dusuel and Vidal (2005), Knysh and Smelyanskiy (2006),
Jörg et al. (2008), Jörg, Krzakala, Kurchan et al. (2010),
and Bapst and Semerjian (2012)], counterexamples wherein
a first-order quantum phase transition is associated with a
polynomially small gap are known (Cabrera and Jullien,
1987; Laumann et al., 2012, 2015; Tsuda, Yamanaka, and
Nishimori, 2013).

7. Sherrington-Kirkpatrick and two-pattern Gaussian Hopfield
models

The Sherrington-Kirkpatrick model, the prototypical spin-
glass model, is NP hard, yet its quantum transverse field Ising
model version (Ishii and Yamamoto, 1985; Usadel, 1986; Ray,
Chakrabarti, and Chakrabarti, 1989; Das, Chakrabarti, and
Stinchcombe, 2005) exhibits a second-order phase transition
separating the paramagnetic phase from the spin-glass phase
(Miller and Huse, 1993; Ye, Sachdev, and Read, 1993). The
model is defined via the final Hamiltonian

H1 ¼
X
i1<i2

Ji1i2σ
z
i1
σzi2 ; ð141Þ

where the couplings Ji1i2 are zero mean, independent and
identically distributed random variables (e.g., Gaussian or
bimodal, i.e., Ji1i2 ¼ �1) and every spin is coupled to every
other spin. The adiabatic computation proceeds via
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HðtÞ ¼ H1 − ΓðtÞ
Xn
i¼1

σxi ; ð142Þ

where Γ is adiabatically reduced to zero.
The polynomial closing of the gap at this phase transition

appears promising for AQC. However, a spin glass is
dominated by a rough free energy landscape with many local
minima forming bottlenecks for classical heuristic local-
search algorithms (Mezard, Parisi, and Virasoro, 1987;
Nishimori, 2001).
To gain insight into this phenomenon, and, in particular, its

impact on StoqAQC, Knysh (2016) studied another fully
connected model with a vanishing classical gap: the Gaussian
Hopfield model, generally defined via

Ji1i2���ip ¼ 1

np−1
Xr
μ¼1

ξðμÞi1
� � � ξðμÞip

ð143Þ

(the Hebb rule), where ξðμÞi are zero-mean independent and
identically distributed random variables of unit variance. By
focusing on the analytically more tractable Hopfield model,
Knysh (2016) rigorously analyzed for r ¼ 2 (the two-pattern
case) and p ¼ 2 (two-local interactions) the properties of local
minima away from the global minimum.
The main insight gained from the theoretical analysis of

Knysh (2016) is that the complexity of the model is not
determined by the phase transition, but rather by the existence
of small-gap bottlenecks in the spin-glass phase. Namely, after
the occurrence of the polynomially closing gap associated
with the second-order phase transition separating the para-
magnetic and glass phases, there are Oðlog nÞ additional gap
minima in the spin-glass phase appearing in an approximate
geometric progression, a phenomenon that can be attributed to
the self-similar properties of the free energy landscape in a Γ
interval bounded by the appearance of the spin-glass phase. At
these bottlenecks, the gaps scale as a stretched exponential

e−cΓ
3=4
m n3=4 , where Γm is the location of the mth minimum. This

is illustrated in Fig. 6. Nevertheless this means that StoqAQC
suffers a (stretched) exponential slowdown, since the two-
pattern Gaussian Hopfield model admits an efficient classical
solution based on angle sorting and an exhaustive search that
scales asO½n logðnÞ� (Knysh, 2016). Thus, this is another case
where a StoqAQC algorithm is too generic to exploit problem
structure, and consequently a tailored classical algorithm has
exponentially better scaling.

E. StoqAQC algorithms with a scaling advantage over simulated
annealing

A substantial effort is underway to develop problems that
may exhibit any form of a quantum speedup (recall the
classification given in Sec. III). One approach has been to
develop “tunneling gadgets,” i.e., small toy Hamiltonians that
exhibit tunneling (Boixo et al., 2016), and use these gadgets to
construct larger problems (Denchev et al., 2016). An alter-
native approach has been to develop instances that are
believed to exhibit “small-and-thin” energy barriers in their
classical energy landscape (Katzgraber et al., 2015) in the

hope that such barriers persist in the quantum energy land-
scape where tunneling occurs. These approaches have been
used primarily to assess the performance of the D-Wave
devices and are based on numerical analysis, which makes
extrapolation and conclusions about asymptotic scaling rather
challenging (Brady and Dam, 2016; Mandrà et al., 2016).
In this section we consider several examples of StoqAQC

with a demonstrable quantumscaling advantage over SA.While
none of the examples are demonstrations of an unqualified
quantum speedup, these examples are illustrative in that they
reveal important qualitative differences between SA, where
thermal fluctuations are used to explore the energy landscape,
andStoqAQC,where quantum fluctuations are used to explore a
different energy landscape. Still, these results are based on a
comparisonwith SA that uses only single-spin updates. SA-like
algorithms with cluster-spin updates can be significantly more
efficient (Swendsen and Wang, 1987; Wolff, 1989; Houdayer,
2001; Zhu, Ochoa, and Katzgraber, 2015; Zintchenko,
Hastings, and Troyer, 2015; Mandrà et al., 2016), and their
performance relative to StoqAQC is largely an open question.
The same is true for parallel tempering (also known as exchange
Monte Carlo) (Katzgraber et al., 2006; Swendsen and Wang,
1986; Marinari and Parisi, 1992; Hukushima and Nemoto,
1996; Earl and Deem, 2005).

1. Spikelike perturbed Hamming weight problems

We start with a problem for which there is no quantum
speedup, in order to set up the more interesting problems that
follow. Consider a cost function fðxÞ to be minimized with
x ∈ f0; 1gn an n-bit string. The final Hamiltonian can
generically be written as

H1 ¼
X
x

fðxÞjxihxj: ð144Þ

We first consider the cost function of the “plain” Hamming
weight problem

FIG. 6. The gap behavior in the r ¼ 2, p ¼ 2Gaussian Hopfield
model. The paramagetic-spin-glass transition occurs at Γc, with
Γ < Γc denoting the spin-glass phase. The typical gap is denoted
using the big-O notation. The spin-glass phase contains log n
additional minima in the gap (indicated by red arrows). Γmin
corresponds to the lowest energy scale of the classical Hamil-
tonian, which in this case scales as 1=N, where N was used to
represent the variable we denote by n. From Knysh, 2016.
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fðxÞ ¼ jxj; ð145Þ

where jxj denotes the Hamming weight of the n-bit string x [as
in Eq. (108)]. This problem is equivalent to a system of n
noninteracting spins in a global (longitudinal) field, which is of
course a trivial problem that can be solved in timeOð1Þ, e.g., by
parallelized SA running with a a single thread for each spin.
The scaling of the time needed by the quantum algorithm is
Oðn1=2Þ, and the full cost of the quantum algorithm isOðn3=2Þ
according to Eq. (1), since it requiresOðnÞ single-qubit terms in
theHamiltonian. A fairer comparison is to an SA algorithm that
is ignorant of the structure of the problem. In this case one can
show that the cost for single-spin update SAwith random spin
selection is lower bounded by Oðn log nÞ (Muthukrishnan,
Albash, and Lidar, 2016).
Next we consider a more interesting problem, referred to as

the “spike,” first studied by Farhi, Goldstone, and Gutmann
(2002a). The cost function is given by

fðxÞ ¼
�
n if jxj ¼ n=4;

jxj otherwise:
ð146Þ

Since the barrier scales with n, we can expect that single-spin-
update SAwill take expðnÞ time to traverse the barrier. However,
it can be shown that the quantum gap scales asΩðn−1=2Þ (Farhi,
Goldstone, and Gutmann, 2002a; Kong and Crosson, 2015), so
the adiabatic algorithm takes only polynomial time.
This type of “perturbed” Hamming weight problem can be

generalized, while still retaining an advantage over single-
spin-update SA. For cost functions of the form

fðxÞ ¼
� jxj þ hðnÞ if lðnÞ < jxj < uðnÞ;
jxj otherwise;

ð147Þ

satisfying h½ðu − lÞ= ffiffi
l

p � ¼ oð1Þ, the minimum gap of the
quantum algorithm is lower bounded by a constant (Reichardt,
2004) [see Appendix A of Muthukrishnan, Albash, and Lidar
(2016) for a pedagogical review of the proof]. The SA run
time, on the other hand, scales exponentially in maxnhðnÞ.
Similarly, consider barriers with width proportional to nα

and height proportional to nβ, i.e.,

fðxÞ ¼
� jxj þ nα if n

4
− 1

2
nβ < jxj < n

4
þ 1

2
nβ;

jxj otherwise.
ð148Þ

When α and β satisfy αþ β ≥ 1=2, α < 1=2, and 2αþ β ≤ 1,
the minimum gap scales polynomially as n1=2−α−β (Brady and
van Dam, 2016a, 2016b), while the SA run time scales
exponentially in nα.

2. Large plateaus

The previous examples have relied on energy barriers in the
classical cost that scale with problem size to foil single-spin-
update SA. This agrees with the intuition that a StoqAQC
advantage over SA is associated with tall and thin barriers (Ray,
Chakrabarti, and Chakrabarti, 1989; Das and Chakrabarti,
2008). However, somewhat counterintuitively, it is also possible
to foil SA by having very large plateaus in the classical cost
function. Specifically, consider

fðxÞ ¼
�
u − 1 if l < jxj < u;

jxj otherwise;
ð149Þ

where l; u ¼ Oð1Þ [a special case of Eq. (147)]. SA
with single-spin updates and random spin selection has run
time Oðnu−l−1Þ, where u − l − 1 is the plateau width
(Muthukrishnan, Albash, and Lidar, 2016). This polynomial
scaling arises because the energy landscape provides no
preferred direction and SA then behaves as a random walker
on the plateau. Numerical diagonalization shows that the
quantum minimum gap is constant and the adiabatic run time
is only Oðn1=2Þ, where the scaling with n arises from the
numerator of the adiabatic condition (Muthukrishnan, Albash,
and Lidar, 2016). Thus StoqAQC has a polynomial scaling
advantage over SA in this case.
A natural question is whether these potential quantum

speedup results for StoqAQC relative to SA survive when
other algorithms are considered. The answer is negative.
Muthukrishnan, Albash, and Lidar (2016) showed that a
diabatic evolution is more efficient than the adiabatic evolution
to solve these problems, and a similar efficiency is achieved
using classical spin-vector dynamics. There is also a growing
body of numerical (Crosson and Deng, 2014; Brady and van
Dam, 2016a; Denchev et al., 2016; Muthukrishnan, Albash,
and Lidar, 2016) and analytical (Crosson and Harrow, 2016;
Isakov et al., 2016) research that shows that quantum
Monte Carlo methods exhibit similar or even identical advan-
tages over SA for many spikelike perturbed Hamming weight
problems.

F. StoqAQC algorithms with undetermined speedup

In this section we focus on examples where it is currently
unknown whether there is a quantum speedup or slowdown
for StoqAQC.

1. Number partitioning

The number partitioning problem is a canonical NP-
complete problem (Garey and Johnson, 1979) that is defined
as follows: given a set of n positive numbers faigni¼1, the
objective is to find a partition P of this set that minimizes the
partition residue E defined as

E ¼




X
j∈P

aj −
X
j∉P

aj





: ð150Þ

The problem exhibits an easy-hard phase transition at the
critical value b=n ¼ 1, where b is the number of bits used to
represent the set faig (Mertens, 1998; Borgs, Chayes, and
Pittel, 2001). In the hard phase it roughly corresponds to
finding the minimum in a set of 2n numbers (Mertens, 2001).
To translate it into Ising spin variables let sj ¼ 1 when j ∈ P
and sj ¼ −1 otherwise, so that

E ¼




Xn
j¼1

ajsj





; ð151Þ

which can then be turned into a Mattis-like Ising Hamiltonian
whose ground state is the minimizing partition:
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H1 ¼
Xn
i;j¼1

aiajsisj: ð152Þ

The energy landscape of this final Hamiltonian is known to be
extremely rugged in the hard phase (Smelyanskiy, Toussaint,
and Timucin, 2002; Stadler, Hordijk, and Fontanari, 2003), and
the asymptotic behavior can already be seen for small sizes n.
While SA effectively requires the searching of all possible bit
configurations with a run time ∝ 20.98n (Stadler, Hordijk, and
Fontanari, 2003), numerical simulations of StoqAQC exhibit a
slightly better run time∝ 20.8n (Denchev et al., 2016). State-of-
the-art classical algorithms have scalings as low as 20.291n

(Becker, Coron, and Joux, 2011).
It should be noted that number partitioning is known as the

“easiest hard problem” (Hayes, 2002) due to the existence of
efficient approximation algorithms that apply in most
(although of course not all) cases, e.g., a polynomial-time
approximation algorithm known as the differencing method
(Karmarkar and Karp, 1982). It should further be noted that if
all the aj’s are bounded by a polynomial in n, then integer
partitioning can be solved in polynomial time by dynamic
programming (Mertens, 2003). The NP hardness of the
number partitioning problem requires input numbers of size
exponentially large in n or, after division by the maximal input
number, of exponentially high precision. This is problematic
since the fajg’s are used as coupling coefficients in the
adiabatic Hamiltonian (152) and suggests that a different
encoding will be needed in order to allow AQC to mean-
ingfully address number partitioning.

2. Exact cover and its generalizations

We review the adiabatic algorithm for exact cover, which
initiated and sparked a tremendous interest in the power of
AQCwhen it was first studied by Farhi et al. (2001). While the
optimistic claim made that “the quantum adiabatic algorithm
worked well, providing evidence that quantum computers (if
large ones can be built) may be able to outperform ordinary
computers on hard sets of instances of NP-complete prob-
lems” turned out to be premature, the historical impact of this
study was large, and it led to the avalanche of work that forms
the core of this review.
The exact cover 3 (EC3) problem is an NP-complete

problem that is a particular formulation of 3-SAT (recall
Sec. V.A) whereby each clause C (composed of 3 bits
xC1

; xC2
; xC3

that are taken from the set of variables
fxi ∈ f0; 1ggni¼1) is satisfied if xC1

þ xC2
þ xC3

¼ 1. There
are only three satisfying assignments: (1,0,0), (0,1,0), and
(0,0,1). A 3-local HamiltonianHC can be associated with each
clause that assigns an energy penalty to the unsatisfying
assignments (Farhi et al., 2001; Latorre and Orus, 2004):

HC ¼ 1
8
½ð1þ σzC1

Þð1þ σzC2
Þð1þ σzC3

Þ
þ ð1 − σzC1

Þð1 − σzC2
Þð1 − σzC3

Þ
þ ð1 − σzC1

Þð1 − σzC2
Þð1þ σzC3

Þ
þ ð1 − σzC1

Þð1þ σzC2
Þð1 − σzC3

Þ
þð1þ σzC1

Þð1 − σzC2
Þð1 − σzC3

Þ�: ð153Þ

A 2-local alternative is (Young, Knysh, and Smelyanskiy,
2010)

HC ¼ 1
4
ðσzC1

þ σzC2
þ σzC3

− 1Þ2: ð154Þ

The final Hamiltonian is then given by H1 ¼
P

C HC. If the
ground state energy is 0, then an assignment exists that
satisfies all clauses. The adiabatic algorithm is given as usual
by HðsÞ ¼ ð1 − sÞH0 þ sH1, with H0 ¼

P
n
i¼1ð1=2Þð1 − σxi Þ.

For instances with a unique satisfying assignment, while the
initial (small n) scaling of the typical minimum gap (median)
is consistent with a polynomial (Farhi et al., 2001; Latorre and
Orus, 2004), the true (large n) scaling is exponential and can
be associated with a first-order phase transition (Young,
Knysh, and Smelyanskiy, 2008, 2010) occurring at inter-
mediate s ¼ sc > 0. The fraction of instances with this
behavior increases with increasing problem size (Young,
Knysh, and Smelyanskiy, 2010). This illustrates the perils
of extrapolating the asymptotic scaling from studies based on
small problem sizes.
A natural generalization of the exact cover problem is to

have the sum of K variables sum to 1 for a clause to be
satisfied, which defines the problem known as “1-in-K SAT.”
Another is to have the clause satisfied unless all the variables
are equal, which defines the problem “K-not-all-equal-SAT.”
Both of these are NP complete and have been shown
analytically to exhibit a first-order phase transition for
sufficiently large K (Smelyanskiy, Knysh, and Morris,
2004). Numerical results for locked 1-in-3 SAT and locked
1-in-4 SAT, where “locked’ is the additional requirement that
every variable is in at least two clauses and that one cannot get
from one satisfying assignment to another by flipping a single
variable (Zdeborová and Mézard, 2008a, 2008b), have been
shown to exhibit an exponentially small gap at the satisfi-
ability transition (Hen and Young, 2011).
Since all these problems are NP complete, there is no

polynomial-time classical algorithm known for their worst-
case instances. Using StoqAQC has, in all cases that have been
studied to date, resulted in exponentially small gaps. Thus,
whether these problems can be sped up (even polynomially) is
at this time still an open problem.

3. 3-Regular MAXCUT

For 3-regular MAXCUT, the problem is to find the assign-
ment that gives the maximum number of satisfied clauses,
where each bit appears in exactly three clauses. Each clause
involves only 2 bits and is satisfied if and only if the sum of the
2 bits (mod 2) is 1. The number of clauses is M ¼ 3n=2. The
final Hamiltonian can be written as

H1 ¼
X3n=2
c¼1

�
1þ σzi1;cσ

z
i2;c

2

�
; ð155Þ

where the index ðik; cÞ denotes the 2 bits associated with
clause c. This model can also be viewed as an antiferromagnet
on a 3-regular random graph. Because the random graph in
general has loops of odd length, it is not possible to satisfy all
of the clauses. This problem is NP hard.
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For random instances of this problem, where there is a
doubly degenerate ground state (the smallest possible because
of the Z2 symmetry) and with a specified energy of n=8, the
standard adiabatic Hamiltonian HðsÞ ¼ −ð1 − sÞPn

i¼1 σ
x
i þ

sH1 exhibits, for sufficiently large sizes of up to n ¼ 160, two
minima in the energy gap (Farhi et al., 2012) (see Fig. 7 for an
example). The first minimum, at s ≈ 0.36, is associated with a
second-order phase transition from paramagnetic to glassy,
and the gap closes polynomially with system size. The second
minimum occurs inside the spin-glass phase, with a gap that
closes exponentially (or possibly a stretched exponential).
Therefore, while the first minimum does not pose a problem
for the adiabatic algorithm (although it has been shown that
the quantum algorithm with a linear interpolating schedule
does not pass through the associated glass phase transition
faster than SA (Liu, Polkovnikov, and Sandvik, 2015)), the
second minimum implies an exponential run time.

4. Ramsey numbers

An adiabatic algorithm for the calculation of the Ramsey
numbers Rðk; lÞ was proposed by Gaitan and Clark (2012).
Rðk; lÞ is the smallest integer r such that every graph on r or
more vertices contains either a k clique or an l-independent
set.35 Computing them by brute force is doubly exponential in
N ¼ maxfk; lg [note that Rðk; lÞ ¼ Rðl; kÞ] using graph
coloring techniques as follows: Try every one of the
2NðN−1Þ=2 colorings of the edges of the complete graph KN
with the colors blue and red. For every coloring, check
whether or not there is an induced subgraph on k vertices

with only blue edges, or an induced subgraph on l vertices
with only red edges. If every coloring contains at least one of
the desired subgraphs, we are done. Otherwise, increment N
by 1 and repeat. Except for certain special values of k and l, no
better algorithm is currently known.
The idea of Gaitan and Clark (2012) was to construct a cost

function hðGÞ for a graph G where

hðGÞ ¼ CðGÞ þ IðGÞ; ð156Þ

where CðGÞ counts the number of m cliques in the graph G
and IðGÞ counts the number of l-independent sets in the graph
G. The cost hðGÞ equals zero only if there does not exist a
k clique or an l-independent set. This will occur only if
Rðk; lÞ > N. The algorithm then proceeds as follows. By
mapping hðGÞ over KN to a final Hamiltonian H1, the
adiabatic algorithm HðsÞ ¼ −ð1 − sÞPn

i¼1 σ
x
i þ sH1 is per-

formed and the final energy of the state is measured. If
hðGÞ ¼ 0, then N is incremented by 1 and the experiment is
repeated. This process continues until the first occurrence of
hðGÞ > 0, in which case N ¼ Rðk; lÞ. Thus the algorithm is
essentially an adiabatic version of the graph coloring method.
It is unknown whether its StoqAQC version improves upon
the classical brute force 2NðN−1Þ=2 scaling. The adiabatic
quantum algorithm was simulated by Gaitan and Clark
(2012) and shown to correctly determine the Ramsey numbers
Rð3; 3Þ and Rð2; sÞ for 5 ≤ s ≤ 7. It was also shown there that
Ramsey number computation is in QMA.
An adiabatic algorithm for generalized Ramsey numbers

(where the induced subgraphs are trees rather than complete
graphs) was presented by Ranjbar et al. (2016). Whether this
results in a quantum speedup is also unknown. We also remark
that Ising formulations for many NP-complete and NP-hard
problems, including all of Karp’s 21 NP-complete problems
(Karp, 1972), are known (Lucas, 2014), but it is unknown
whether they are amenable to a quantum speedup.

5. Finding the largest cliques in random graphs

The fastest algorithm known to date for the NP-hard
problem of finding the largest clique in a graph runs in time
Oð20.249nÞ for a graph with n vertices (Robson, 2001).36 For
random graphs, a superpolynomial time is required to find
cliques larger than log n using the Metropolis algorithm, while
the maximum clique is likely to be of a size very close to
2 log n (Jerrum, 1992). One of the earliest papers on the
quantum adiabatic algorithm was concerned with the largest
clique problem for random graphs (Childs et al., 2002),
although the algorithm presented there works for general
graphs. The results were numerical and showed, by fixing the
desired success probability, that the median time required by
the adiabatic algorithm to find the largest clique in a random
graph are consistent with quadratic growth for graphs of up to
18 vertices. These results on small graphs probably do not
capture the asymptotic behavior of the algorithm (the
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FIG. 7. The gap to the first even excited state for an instance of
size n ¼ 128 exhibiting two minima. The lower minimum occurs
well within the spin-glass phase, while the higher minimum is
associated with the second-order phase transition. From Farhi
et al., 2012.

35A k clique is a subset of k vertices such that every two distinct
vertices are adjacent. Equivalently, the subgraph induced by the clique
is a complete graph. An independent set is a subset of the vertices no
two of which are adjacent. Rðk; lÞ can be phrased as the “party
problem”: What is the smallest number of guests one can invite to a
party such that there is always either a group of k guests that all know
each other or a group of l guests, none ofwhomknoweach other? Such
a threshold number always exists (Ramsey, 1930).

36As stated, this is actually an algorithm for the complementary
maximum independent set (MIS) problem, but this is sufficient since
MISðGÞ ¼ max−cliqueðḠÞ for any graph G and its complement Ḡ,
and the algorithm applies for arbitrary G.
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coefficients grow rapidly and have alternating sign), which is
likely to be dominated by exponentially small gaps [however,
to the extent that these are due to perturbative crossings, they
can be avoided by techniques we discuss in Sec. VII.G, in
particular, as related to the maximum independent set problem
(Choi, 2011)].

6. Graph isomorphism

In the graph isomorphism problem, two N-vertex graphs G
and G0 are given, and the task is to determine whether there
exists a permutation of the vertices of G such that it preserves
the adjacency and transforms G to G0, in which case the
graphs are said to be isomorphic. If and only if the graphs are
isomorphic does there exist a permutation matrix σ that
satisfies

A0 ¼ σAσT; ð157Þ

where A and A0 are the adjacency matrices of G and G0,
respectively. An adiabatic algorithm to determine whether a
pair of graphs are isomorphic was first proposed by Hen and
Young (2012), mostly for strongly regular graphs, and
generalized to arbitrary graphs by Gaitan and Clark (2014),
which also showed how to determine the permutation(s) that
connect a pair of isomorphic graphs, and the automorphism
group of a given graph. The final Hamiltonian formulated by
Gaitan and Clark (2014) is such that when the ground state
energy vanishes the graphs are isomorphic and the bit string
s ¼ ðs0;…; sN−1Þ associated with the ground state gives an
N × N permutation matrix σðsÞ to perform the transformation:

σðsÞij ¼
�
0 if sj > N − 1;

δi;sj if 0 ≤ sj ≤ N − 1.
ð158Þ

The computational complexity of these adiabatic algorithm is
currently unknown. However, a recent breakthrough gave a
quasipolynomial (exp½ðlog nÞOð1Þ�) time classical algorithm
for graph isomorphism (Babai, 2015). It seems unlikely that
this can be improved upon by using StoqAQC without deeply
exploiting problem structure.

7. Machine learning

Quantum machine learning is currently an exciting and
rapidly moving frontier in the context of the circuit model
(Lloyd, Mohseni, and Rebentrost, 2014; Rebentrost, Mohseni,
and Lloyd, 2014; Wiebe, Kapoor, and Svore, 2014), although
it must be evaluated carefully (Aaronson, 2015). One
StoqAQC approach is to find a quantum version of the
classical method of boosting, wherein multiple weak classi-
fiers (or features) are combined to create a single strong
classifier (Freund, Schapire, and Abe, 1999; Meir, 2003). The
task is to find the optimal set of weights of the weak classifiers
so as to minimize the training error of the strong classifier on a
training data set. After this training step, the strong classifier is
then applied to a test data set. This optimization problem can
be mapped to a quadratic unconstrained binary optimization
(QUBO) problem, which can then be trivially turned into an
Ising spin Hamiltonian suitable for adiabatic quantum

optimization, where the binary variables represent the
weights. This idea was implemented by Neven et al. (2008,
2009), Neven, Rose, and Macready (2008), Denchev et al.
(2012), Pudenz and Lidar (2013), and Babbush et al. (2014),
where the ground states found by the adiabatic algorithm
encode the solution for the weights.
Another idea is to learn the weights of a Boltzmann

machine or, after the introduction of a hidden layer, a reduced
Boltzmann machine (Hinton, Osindero, and Teh, 2006). The
latter forms the basis for various modern methods of deep
learning. StoqAQC approaches for this problem were devel-
oped by Adachi and Henderson (2015), Amin et al. (2016),
and Benedetti et al. (2016).
Neither the classical nor the quantum computational com-

plexity is known in this case, but scaling of the solution time
with problem size is not the only relevant criterion: classi-
fication accuracy on the test data set is another crucial metric.
It is possible, although at this point entirely speculative, that
the quantum method will lead to better classification perfor-
mance. This can come about in the case of ground state
degeneracy, if the weights are reconstructed via ground state
solutions and if quantum and classical heuristics for solving
the QUBO problem find different ground states (Matsuda,
Nishimori, and Katzgraber, 2009; Azinović et al., 2016;
Mandrà, Zhu, and Katzgraber, 2017; Zhang et al., 2017).

G. Speedup mechanisms?

While the universality of AQC suggests that similar
speedup mechanisms are at play as in the circuit model of
quantum computing, the situation is less clear regarding
StoqAQC. Here we discuss two potential mechanisms, tun-
neling and entanglement, that might be thought to endow
StoqAQC with an advantage over classical algorithms.

1. The role of tunneling

It is often stated that an advantage of StoqAQCover classical
heuristic local-search algorithms is that the quantum system
has the ability to tunnel through energy barriers, which can
provide an advantage over classical algorithms such as simu-
lated annealing that only allow probabilistic hopping over the
same barriers. Indeed, such a qualitative picture motivated
some of the early research on quantum annealing (Finnila et al.,
1994). However, this statement requires a careful interpretation
as it has the potential to be misleading. Whereas only the final
cost function—which generates the energy landscape that the
classical random walker explores—matters for the classical
algorithm, this energy landscape does not become relevant for
the quantum evolution until the end. Therefore, tunneling does
not occur on the energy landscape defined by the final cost
function alone, if it occurs at all. A different notion of tunneling
is at work, which we now explain.
The standard notion of tunneling from single-particle

quantum mechanics involves a semiclassical potential where
classically allowed and classically forbidden regions can be
defined. Starting from a many-body Hamiltonian, there is no
unique way to take the semiclassical limit. Consider one such
limit, based on the spin-coherent path integral formalism
(Klauder, 1979):
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hΩðtfÞjTexp
�
−i

Z
tf

0

dτHðτÞ
�
jΩð0Þi ¼

Z
DΩðtÞeði=ℏÞS½ΩðtÞ�;

ð159Þ

where the action S½ΩðtÞ� is given by

S½ΩðtÞ� ¼
Z

tf

0

dt½iℏhΩðtÞj∂tjΩðtÞi − hΩðtÞjHðtÞjΩðtÞi�;

ð160Þ

and

jΩi≡ jθ;φi
≡ ⊗n

j¼1 ½cosðθj=2Þj0ij þ eiφj sinðθj=2Þj1ij� ð161Þ

is the spin-coherent state (Arecchi et al., 1972).
Despite the absence of a true kinetic term, we can identify

the semiclassical potential as

VSCðfθjg; fφjg; tÞ ¼ hΩjHðtÞjΩi. ð162Þ

This form for VSC has been used (Farhi, Goldstone, and
Gutmann, 2002a; Schaller and Schützhold, 2010; Boixo et al.,
2016; Muthukrishnan, Albash, and Lidar, 2016) to capture
many of the relevant features of StoqAQC problems endowed
with qubit-permutation symmetry; this symmetry often allows
for analytical and numerical progress.37

We illustrate this approach with the Grover Hamiltonian
[Eq. (16)]. Recall that the final Hamiltonian is H1 ¼ 1−
jmihmj, where jmi is the marked state associated with the
marked item. As a cost function, this is the antithesis of the
“tall and narrow” potential that is often associated with a
classical speedup hxjH1jxi ¼ 1 − δx;m, i.e., the potential is flat
everywhere, except for a well of constant depth at the marked
state. Nevertheless, we now show that following the instanta-
neous ground state will involve the tunneling of OðnÞ qubits.
Without loss of generality we assume that the “marked”

state is the all-zero bit string. Setting θj ≡ θ and φj ≡ φ∀ j in
Eq. (161), the Hamiltonian can be written succinctly as

HðsÞ ¼ ð1 − sÞ½1 − jΩðπ=2; 0ÞihΩðπ=2; 0Þj�
þ s½1 − jΩð0; 0ÞihΩð0; 0Þj�: ð163Þ

The semiclassical potential for the Grover problem is then

VSCðθ; 0Þ ¼ ð1 − sÞ
�
1 −

1

2n
ð1þ sin θÞn

�

þ s

�
1 −

1

2n
ð1þ cos θÞn

�
: ð164Þ

The locations of the two degenerate minima at s ¼ 1=2 are
given by the pair of transcendental equations:

1 − cos θ þ sin θ
1þ cos θ − sin θ

¼
�
1þ sin θ
1þ cos θ

�
n
; ð165aÞ

1þ cos θ − sin θ
1 − cos θ þ sin θ

¼
�
1þ cos θ
1þ sin θ

�
n
; ð165bÞ

which in the limit of n → ∞ have solutions 0 and π=2,
respectively. This equation is invariant under θ → π=2 − θ,
which corresponds to the two minima. Since the semiclassical
potential in Eq. (164) at s ¼ 1=2 is also invariant under
θ → π=2 − θ, the local minima have identical structure. Using
the Hamming weight operator defined as

HW ¼ 1

2

Xn
i¼1

ð1 − σzi Þ; ð166Þ

this potential suggests that in the large n limit we can expect
that n=2 spins need to be flipped in order to move from the
θ ≈ π=2 minimum to the θ ≈ 0 minimum, i.e.,

hΩðπ=2; 0ÞjHWjΩðπ=2; 0Þi − hΩð0; 0ÞjHWjΩð0; 0Þi ¼ n=2:

ð167Þ

The instantaneous ground state, as it passes through the
minimum gap at s ¼ 1=2, indeed exhibits this behavior as
shown in Fig. 8.
However, the more general role of tunneling in providing

quantum speedups is not by any means evident. This topic was
studied in detail by Muthukrishnan, Albash, and Lidar (2016),
who showed that tunneling is neither necessary nor sufficient
for speedups in the class of perturbed Hamming weight
optimization problems with qubit-permutation symmetry.
Our discussion here has been restricted to coherent tunnel-

ing, and compelling arguments have been presented by Boixo
et al. (2016), Denchev et al. (2016), and Andriyash and Amin
(2017) that incoherent, thermally assisted tunneling plays a
computational role in quantum annealing. However, this
mechanism is in the open-system setting, which is outside
the scope of this review. Moreover, its role in Boixo et al.
(2016) and Denchev et al. (2016) was limited to a prefactor
and does not translate into a scaling advantage, i.e., it does not
qualify as a speedup according to the classification of Rønnow
et al. (2014).

2. The role of entanglement

The role that entanglement plays in quantum computation
with pure states in the circuit model depends on the entangle-
ment measure used. On the one hand, it is well known that for
any circuit model quantum algorithm operating on pure states
the presence of multipartite entanglement quantified via the
Schmidt rank (with a number of parties that increases
unboundedly with input size) is necessary if the quantum
algorithm is to offer an exponential speedup over classical
computation (Jozsa and Linden, 2003). On the other hand,
universal quantum computation can be achieved in the
standard pure-state circuit model while the entanglement
entropy (or any other suitably continuous entanglement
measure) of every bipartition is small in each step of the

37Note that by using a product-state ansatz via the symmetric spin-
coherent state, the semiclassical approach implicitly takes advantage
of the bit symmetry of the problem. This is inaccessible to an
algorithm that has only black-box access to f, thus limiting the
generality of this approach.
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computation (Van den Nest, 2013). The corresponding role of
entanglement in the computational efficiency of AQC remains
an open question. Partly this is because the connection
between entanglement and spectral gaps is not yet very well
understood, and partly this is because even if entanglement is
present, its computational role in AQC is unclear.
The area law asserts that for any subset S of particles, the

entanglement entropy between S and its complement is
bounded by the surface area of S rather than the trivial
bound of the volume of S. While generic quantum states do
not obey an area law (Hayden, Leung, and Winter, 2006),
and there are 1D systems for which there is exponentially
more entanglement than suggested by the area law
(Movassagh and Shor, 2016), a sweeping conjecture in
condensed matter physics is that in a gapped system the
entanglement spreads only over a finite length, which leads
to area laws for the entanglement entropy (Eisert, Cramer,
and Plenio, 2010).38 For example, the area law for gapped
1D systems, proved by Hastings (2007), states that for the
ground state, the entanglement of any interval is upper
bounded by a constant independent of the size of the
interval. While this leaves open the question of the general
dependence of the upper bound on the spectral gap Δ, this
means that the ground state of such systems is accurately
described by polynomial-size matrix product states (MPSs)
(White, 1992; White and Noack, 1992; Östlund and
Rommer, 1995). Gottesman and Hastings (2010) showed
that for a certain 1D system the entanglement entropy in
some regions can be as high as polyð1=ΔÞ. This demon-
strates that the entanglement entropy can become large as
the gap becomes small. Two other important recent results
are the existence of a polynomial-time algorithm for the
ground state of 1D gapped local Hamiltonians with constant
ground state energy (Huang, 2014; Landau, Vazirani, and
Vidick, 2015), and the fact that 1D quantum many-body

states satisfying exponential decay of correlations always
fulfill an area law (Brandao and Horodecki, 2013).
However, the connection between entanglement entropy

and gaps is not nearly as clear in higher dimensional systems,
even though entanglement close to quantum phase transitions
is a well-developed subject (Osborne and Nielsen, 2002;
Osterloh et al., 2002; Vidal et al., 2003; Wu, Sarandy, and
Lidar, 2004; Amico et al., 2008).
It is not surprising that entanglement is necessary for the

computation to succeed if the intermediate ground states that
the system must follow are entangled. This was explicitly
verified by Bauer et al. (2015), where the quantum state was
represented by an MPS and projected entangled-pair states
(PEPS) (Verstraete and Cirac, 2004; Verstraete, Murg, and
Cirac, 2008). This work showed that the probability of finding
the ground state of an Ising spin glass on either a planar or
nonplanar two-dimensional graph increases with the amount
of entanglement in the MPS state or PEPS state. Furthermore,
even a small amount of entanglement gives improved success
probability over a mean-field model. However, this does not
resolve the role entanglement plays in generating a speedup.
In an attempt to address this, the entanglement entropy for

the adiabatic Grover algorithm was studied, and it was found
to be bounded (≤ 1) throughout the evolution (Orús and
Latorre, 2004). This was also observed numerically for
systems with 10 qubits (Wen and Qiu, 2008). In an effort
to check whether more entanglement may help the Grover
speedup, Wen, Huang, and Qiu (2009) considered adding an
additional term to the Hamiltonian to make the ground state
more entangled, to reach an Oð1Þ scaling in a Grover search
task. However, since it is impossible to achieve a better-than-
quadratic speedup in the Grover search problem without
introducing an explicit dependence on the marked state
(Bennett et al., 1997), this result is not conclusive in linking
entanglement with enhanced computational efficiency.
Furthermore, a two-dimensional path for the Grover problem
using the quantum adiabatic brachistochrone approach (see
Sec. VII.B) that gives a higher success probability for the
same evolution time relative to the standard one-dimensional

(a) (b) (c)

FIG. 8. Analysis of tunneling in the Grover problem. (a) The semiclassical potential for n ¼ 20 at different dimensionless times s. The
arrows indicate the behavior of the local minima as s increases. There is a discrete jump in the position of the global minimum at
s ¼ 1=2, where it changes from being at θ ≈ π=2 to θ ≈ 0, corresponding to a first-order quantum phase transition. (b) The behavior of
the potential when the two minima are degenerate at s ¼ 1=2. As n grows, both the barrier height grows (and saturates at 1) and
the curvature of the local minima grows. (c) The expectation value of the Hamming weight operator [defined in Eq. (166)] of the
instantaneous ground state as n grows. This is to be interpreted as the system requiring OðnÞ spins to tunnel in order to follow the
instantaneous ground state as the system crosses the minimum gap at s ¼ 1=2.

38Here “gapped” means Oð1Þ, whereas in AQC gapped usually
means O½1=polyðnÞ�.
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path for the Grover problem, in fact has less entanglement
(negativity) (Rezakhani et al., 2009).
The entanglement entropy in the adiabatic algorithm for the

Exact Cover problem, where no speedup is known (recall
Sec. VI.F.2), scales linearly with problem size for n ≤ 20

(Latorre and Orus, 2004; Orús and Latorre, 2004).
Further studies have also shown this lack of correlation

between performance and the amount of entanglement entropy.
Hauke et al. (2015) performed simulations of adiabatic
quantum optimization of a trapped ion Hamiltonian with
n ¼ 16 of the form

H1 ¼ J
Xn
i≠j

σziσ
z
j

ji − jj þ
X
i

hziσ
z
i þ V

Xn
i≠j

σziσ
z
j; ð168Þ

with 100 disorder realizations of hzi . It was found that a large
entanglement entropy has little significance for the success
probability of the optimization task.
Overall, these results indicate that the connection between

entanglement and algorithmic efficiency in AQC is currently
wide open and deserves further study.

VII. CIRCUMVENTING SLOWDOWN MECHANISMS FOR
AQC

In this section we collect several insights into mechanisms
that explain slowdowns in the performance of adiabatic
algorithms. We also discuss mechanisms for circumventing
such slowdowns. Several important ideas will be reviewed:
avoiding the use certain initial and final Hamiltonians,
modifying the adiabatic schedule, avoiding quantum phase
transitions, and avoiding perturbative energy level crossings.

A. Avoiding poor choices for the initial and final Hamiltonians

We first show that if one chooses the initial Hamiltonian to
be the one-dimensional projector onto the uniform super-
position state jϕi, and uses a linear interpolation, then an
improvement beyond a Grover-like quadratic speedup is
impossible as long as the final Hamiltonian H1 is diagonal
in the computational basis. Specifically, for an adiabatic
algorithm of the form

HðtÞ ¼
�
1 −

t
tf

�
Eð1 − jϕihϕjÞ þ t

tf
H1; ð169Þ

the run time tf for measuring the ground state of H1 with
probability p is lower bounded by [Theorem 1 of Farhi et al.
(2008); see also Žnidarič and Horvat (2006)]

tf ≥
2

E
ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
Þ

ffiffiffiffi
N
k

r
− 2

ffiffiffiffi
p

p
E

; ð170Þ

where N ¼ 2n and k is the degeneracy of the ground state of
H1. To see this, define an operator Vx for x ¼ 0;…; N − 1 that
is diagonal in the computational basis:

hzjVxjzi ¼ e2πizx=N; ð171Þ

and let jxi ¼ Vxjϕi ¼ ð1= ffiffiffiffi
N

p ÞPN−1
z¼0 e2πizx=N jzi. Now define

the modified adiabatic algorithm

HxðtÞ ¼
�
1 −

t
tf

�
Eð1 − jxihxjÞ þ t

tf
H1: ð172Þ

Note that jx ¼ 0i ¼ jϕi implies that H0ðtÞ ¼ HðtÞ. For each
x, the final state is given by jψxi ¼ Uxðtf; 0Þjxi, with success
probability px ¼ hψxjPjψxi, where P is the projector onto the
ground subspace of H1. Using HxðtÞ ¼ VxH0V

†
x, we have

Uxðt; 0Þ ¼ VxU0ðt; 0ÞV†
x, and hence px ¼ p; ∀ x since Vx

commutes with P. We should already see a potential problem
for having tf scale better than

ffiffiffiffi
N

p
, since if we were to run

the algorithm backward, we would find the state jxi,
which would be solving the Grover problem [note that the
initial Hamiltonian (172) is the Grover Hamiltonian in a
rotated basis].
Now define an evolution according to an x-independent

Hamiltonian:

HRðtÞ ¼
�
1 −

t
tf

�
E1þ t

tf
H1; ð173Þ

and let jgxi ¼ ð1= ffiffiffiffi
p

p ÞPjψxi. Consider the difference in the
reverse evolutions associated with HRðtÞ and HxðtÞ from jgxi:

SðtÞ ¼
X
x

k½U†
xðtf; tÞ − U†

Rðtf; tÞ�jgxik2: ð174Þ

We can write jgxi ¼ ffiffiffiffi
p

p jψxi þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p jψ⊥
x i, where jψ⊥

x i is

orthogonal to jψxi. Using U†
xðtf; 0Þjψxi ¼ jxi and defining

jRxi ¼ U†
Rðtf; 0Þjgxi, we have

Sð0Þ¼
X
x

k ffiffiffiffi
p

p jxiþ
ffiffiffiffiffiffiffiffiffiffi
1−p

p
jx⊥i− jRxik2 ð175aÞ

¼2N−
X
x

½ ffiffiffiffi
p

p hxjRxiþ
ffiffiffiffiffiffiffiffiffiffi
1−p

p
hx⊥jRxiþc:c:� ð175bÞ

≥ 2N − 2
ffiffiffiffi
p

p X
x

jhxjRxij − 2N
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
: ð175cÞ

Since HR commutes with H1, the state jRxi is an element of
the k-dimensional ground subspace of H1. Choosing a basis
fjGiigki¼1 for this subspace, and writing jRxi ¼

P
k
i¼1 αx;ijGii,

we haveX
x

jhxjRxij ≤
X
x;i

jαx;ij · jhxjGiij

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;i

jαx;ij
X
x0;i0

jhx0jGi0 ij
s

¼
ffiffiffiffiffiffi
Nk

p
: ð176Þ

Therefore, we have

Sð0Þ ≥ 2Nð1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
Þ − 2

ffiffiffiffiffiffiffiffiffi
Nkp

p
: ð177Þ

In order to upper bound Sð0Þ, we use SðtfÞ − Sð0Þ ≤R tf
0 jðd=dtÞSðtÞjdt with SðtfÞ ¼ 0. The derivative can be
computed using the Schrödinger equation
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d
dt

SðtÞ ¼ −i
X
x

hgxjUxðtf; tÞ½HxðtÞ −HRðtÞ�U†
Rðtf; tÞjgxi

þ c:c:

¼ −2ℑ
X
x

�
1 −

t
tf

�
EhgxjUxðtf; tÞjxi

× hxjU†
Rðtf; tÞjgxi: ð178Þ

Thus,



 ddt SðtÞ




 ≤ 2E

�
1 −

t
tf

�X
x

jhxjU†
Rðtf; tÞjgxij ð179aÞ

≤ 2E

�
1 −

t
tf

� ffiffiffiffiffiffi
Nk

p
; ð179bÞ

where in Eq. (179b) we used the same trick as in Eq. (176).
Therefore,

R tf
0 jðd=dtÞSðtÞjdt ≤ Etf

ffiffiffiffiffiffi
Nk

p
. Putting the upper

and lower bounds for Sð0Þ together we have

Etf
ffiffiffiffiffiffi
Nk

p
≥ 2Nð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
Þ − 2

ffiffiffiffiffiffiffiffiffi
Nkp

p
; ð180Þ

which yields Eq. (170).
As an example of the relevance of this result, consider the

trivial case of n decoupled spins in a global magnetic field. For
an initial Hamiltonian that reflects the bit structure of the
problem, e.g., the standard H0 ¼ −

P
i σ

x
i , the run time of the

adiabatic algorithm scales as
ffiffiffi
n

p
(Muthukrishnan, Albash,

and Lidar (2016); Brady and van Dam, 2017). If, however, we
were to choose instead the projector initial Hamiltonian, the
result shows that we would find a dramatically poor scaling
despite the simplicity of the final Hamiltonian.
A similar result is found if all structure is removed from

the final Hamiltonian. Namely, if H1 ¼
P

z hðzÞjzihzj, we
can define a permutation π over the N computational-basis
states such that h½π�ðzÞ ¼ h(π−1ðzÞ). Assume that the initial
Hamiltonian is π independent and that cðtÞ satisfies jcðtÞj ≤ 1.
Then, for the permuted Hamiltonian H1;π ¼

P
z hðzÞjπðzÞi×

hπðzÞj, one can show that if the adiabatic algorithm

HπðtÞ ¼ H0 þ cðtÞH1;π ð181Þ

succeeds with probability p for a set of ϵN! permutations, then
[Theorem 2 of Farhi et al. (2008)]

tf ≥
ϵ2p
16h�

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
−
ϵ

ffiffiffiffiffiffiffi
ϵ=2

p
4h�

; ð182Þ

where h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

z hðzÞ2=N − 1
q

. This result means that no

algorithm of the form of Eq. (181) can find the minimum of
H1;π with a constant probability for even a fraction of all
permutations if tf is oð ffiffiffiffi

N
p Þ.

The lesson from this analysis is what not to do when
designing quantum adiabatic algorithms: avoid choosing the
initial Hamiltonian to be the one-dimensional projector onto
the uniform superposition state if a better-than-quadratic
speedup is hoped for and avoid removing structure from
the final Hamiltonian.

B. Quantum adiabatic brachistochrone

Modifying the adiabatic schedule adaptively so that it slows
down as the gap decreases is an approach that is essential for
obtaining a quadratic speedup using the adiabatic Grover
algorithm (recall Sec. III.A). Here we discuss how such ideas,
including the condition for the locally optimized schedule
[Eq. (24)] can be understood as arising from a variational
time-optimal strategy for determining the interpolating
Hamiltonian between H0 and H1 (Rezakhani et al., 2009).
By time optimal we mean a strategy that gives rise to the
shortest total evolution time tf while guaranteeing that the
final evolved state jψðtfÞi is close to the desired final ground
state jε0ðtfÞi. The success of the strategy is judged by the
trade-off between tf and the fidelity FðtfÞ ¼ jhψðtfÞjε0ðtfÞij2.
We first discuss this method generally and then show how it
applies to the adiabatic Grover case.
The interpolating Hamiltonian’s time dependence comes

from a set of control parameters x⃗ðtÞ ¼ (x1ðtÞ;…; xMðtÞ), i.e.,
HðtÞ ¼ H½x⃗ðtÞ�. We can parametrize x⃗ðtÞ in terms of a
dimensionless time parameter sðtÞ with sð0Þ ¼ 0 and
sðtfÞ ¼ 1, where v ¼ ds=dt characterizes the speed of motion
along the control trajectory x⃗½sðtÞ�. The total evolution time is
then given by

tf ¼
Z

1

0

ds
vðsÞ : ð183Þ

Motivated by the form of the adiabatic condition, let us define
the following Lagrangian:

L½x⃗ðsÞ; _⃗xðsÞ�≡ k∂sHðsÞk2HS
ΔpðsÞ

¼
X
i;j

Tr½∂xiHðsÞ∂xjHðsÞ�
ΔpðsÞ ∂sxiðsÞ∂sxjðsÞ

ð184Þ

(p > 0), and adiabatic-time functional

T ½x⃗ðsÞ� ¼
Z

1

0

dsL½x⃗ðsÞ; _⃗xðsÞ�; ð185Þ

where kAkHS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA†AÞ

p
is the Hilbert-Schmidt norm,

chosen to ensure analyticity (this choice is not unique, but
other choices may not induce a corresponding Riemannian
geometry). The time-optimal curve x⃗QABðsÞ is the quantum
adiabatic brachistochrone (QAB) and is the solution of the
variational equation δT ½x⃗ðsÞ�=δx⃗ðsÞ ¼ 0.
Alternatively, the problem can be thought of in geo-

metrical terms. The integral in Eq. (185) is of the formR
ds

P
i;j gijðx⃗Þ∂sxi∂sxj, which defines a reparametrization-

invariant object. Therefore, using results from differential
geometry, the Euler-Lagrange equations derived from extrem-
izing Eq. (185) are simply the geodesic equations associated

with the metric gij appearing in L½x⃗ðsÞ; _⃗xðsÞ� ¼ gijðx⃗Þ_xi _xj
(Einstein summation convention):
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∂2
sxk þ Γk

ij∂sxi∂sxj ¼ 0; ð186Þ

where

Γk
ij ¼ 1

2
gklð∂jgli þ ∂iglj − ∂lgijÞ

are the Christoffel symbols (connection coefficients) and

gijðx⃗Þ ¼
Tr½∂iHðx⃗Þ∂jHðx⃗Þ�

Δpðx⃗Þ : ð187Þ

To find the variational time-optimal strategy associated with
minimizing Eq. (185), the procedure is thus as follows:
(a) solve Eq. (186) to find the optimal path x⃗QABðsÞ, and
(b) compute the adiabatic error using the Schrödinger equation
along this optimal path (or multiparameter schedule). Note
that to compute the metric requires knowledge of the gap or at
least an estimate thereof.
The optimal path is a geodesic in the parameter manifold

endowed with the Riemannian metric g. This metric gives rise
to a curvature tensor R, which can be computed from the
metric tensor and the connection using standard methods
(Nakahara, 1990). Namely, Γ ∼ g−1∂g ∼ Δ−1∂Δ, and
R ∼ ∂2gþ gΓ2 ∼ Δ−p−2. Thus, the smaller the gap, the higher
the curvature.
Let us illustrate with a simple example. Consider the

following Hamiltonian with a single control parameter x1ðsÞ:
HðsÞ ¼ ½1 − x1ðsÞ�P⊥

a þ x1ðsÞP⊥
b ; ð188Þ

where we have defined the projector P⊥
a ¼ 1 − jaihaj and

similarly for P⊥
b . This includes the Grover problem as the

special case where jai is the uniform superposition and jbi is
the marked state. We can always find a state ja⊥i such that
jbi ¼ α0jai þ α1ja⊥i, where α0 ¼ hajbi. Therefore, the
evolution according to HðsÞ occurs in a two-dimensional
subspace spanned by jai and ja⊥i, and

∂x1HðsÞ ¼ −P⊥
a þ P⊥

b ; ð189aÞ

Tr½∂x1HðsÞ∂x1HðsÞ� ¼ 2ð1 − jα0j2Þ; ð189bÞ

ΔðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ð1 − jα0j2Þx1ðsÞ½1 − x1ðsÞ�

q
; ð189cÞ

g11 ¼
2ð1 − jα0j2Þ

ΔðsÞ3 : ð189dÞ

The geodesic equation is then given by

d2

ds2
x1ðsÞ

þ p½1 − 2x1ðsÞ�ð1 − jα0j2Þ
1 − 4x1ðsÞ½1 − x1ðsÞ�ð1 − jα0j2Þ

�
d
ds

x1ðsÞ
�

2

¼ 0:

ð190Þ
In the case of p ¼ 4, we can solve this equation analytically,
and the solution with the boundary conditions x1ð0Þ ¼ 1 −
x1ð1Þ ¼ 0 is given by

x1ðsÞ ¼ 1

2
þ jα0j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jα0j2

p tan ½cos−1ðjα0jÞð2s − 1Þ�. ð191Þ

Note that

cos−1ðjα0jÞ ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jα0j2
p

jα0j
�
.

Remarkably, this is equivalent to the expression we found for
the Grover problem [Eq. (29)] if we take α0 ¼ 1=

ffiffiffiffi
N

p
, despite

the different choice of norm and value of p. This shows that
the optimal schedule for the Grover problem has a deep
differential geometric origin.
We can extend the analysis to two control parameters such

that the time-dependent Hamiltonian is given by

HðsÞ ¼ x1ðsÞP⊥
a þ x2ðsÞP⊥

b : ð192Þ
The associated QAB (or geodesic) path can be found numeri-
cally, and it turns out that it is not of the form x2ðsÞ ¼
1 − x1ðsÞ, i.e., it is different from the (Roland and Cerf, 2002)
path given by Eq. (191). The optimal two-parameter path
reduces the adiabatic error relative to the latter [see Fig. 9(a)],
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FIG. 9. (a) Final-time error δðTÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðTÞp

(T ¼ Tf in our
notation) for the single-control (denoted RC for Roland-Cerf) and
two-parameter control (denoted geodesic2) geodesic paths for the
Grover problem with n ¼ 6. Squares (cyan) indicate where the
two-parameter geodesic path outperforms (i.e., has a lower error
than) the single-parameter path, and circles (red) correspond to
the opposite case. (b) The curvature tensor component R1212 for
n ¼ 3. The curves on the curvature surface show the case of the
standard linear interpolation x2 ¼ 1 − x1 (denoted Crit.), the path
followed by the one-parameter geodesic (denoted RC), and the
path followed by the two-parameter geodesic (denoted QAB).
From Rezakhani et al., 2009.
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but cannot, of course, reduce the (already optimal)
ffiffiffiffi
N

p
scaling. The two-parameter QAB also has lower curvature
than the Roland-Cerf path [see Fig. 9(b)], which implies that it
follows a path with a larger gap and less entanglement than the
latter (Rezakhani et al., 2009) as mentioned in Sec. VI.G.2.
The differential geometric approach to AQC was further

explored by Rezakhani et al. (2010), where its connections to
quantum phase transitions were elucidated within a unifying
information-geometric framework; see also Zulkowski and
DeWeese (2015).

C. Modifying the initial Hamiltonian

Rather than modifying the adiabatic interpolation, one may
modify the initial Hamiltonian. Such a strategy was pursued
by Farhi et al. (2011) and tried on a particular set of 3-SAT
instances, where the clauses are picked randomly subject to
satisfying two disparate planted solutions and then penalizing
one of them with a single additional clause. This was done in
order to generate instances with an avoided crossing at the
final time s ¼ 1, reproducing the type of obstacle to AQC
envisioned by Altshuler, Krovi, and Roland (2010).
It was then shown that in this case, by picking a random

initial Hamiltonian of the form

H0 ¼
1

2

Xn
i¼1

cið1 − σxi Þ; ð193Þ

where ci is a random variable taking value 1=2 or 3=2 with
equal probability, it is possible to remove the small gap
encountered by the standard adiabatic algorithm with high
probability. Since this strategy does not rely on information
about the specific instance, it appears to be quite general.
Therefore, if the algorithm is to be run on a single instance of
some optimization problem, the adiabatic algorithm should be
run repeatedly with different initial Hamiltonians (Farhi
et al., 2011).
An alternative approach based on modifying the initial

Hamiltonian, with a different goal, was proposed by Perdomo-
Ortiz, Venegas-Andraca, and Aspuru-Guzik (2011), whereby
an initial guess for the solution (a computational-basis state) is
used as the initial state of the adiabatic algorithm. An initial
Hamiltonian is used with this state as its ground state.
Evolution to the final Hamiltonian then proceeds according
to a standard schedule. If the final state that is measured is not
the ground state of the final Hamiltonian (due to diabatic
transitions), the algorithm can be repeated with the measured
state as the new initial state. Such “warm start” repetitions of
the algorithm exhibited improved performance compared to
the standard approach for 3-SAT problems, although the
results were limited to relatively small system sizes of six
and seven qubits.

D. Modifying the final Hamiltonian

The same problem can be specified by two or more different
final Hamiltonians, as seen in the case of EC3, in terms of
Eqs. (153) and (154). Altshuler, Krovi, and Roland (2010)
claimed that adiabatic quantum optimization fails for random
instances of EC3 because of Anderson localization. The claim,

discussed in more detail in Sec. VII.G, was based on the form
given in Eq. (154). However, Choi (2011) argued that it is
possible to reformulate the final Hamiltonian for EC3 such
that the argument in Altshuler, Krovi, and Roland (2010) may
not apply. Namely, for any pair of binary variables xCi

; xCj
in

the same clause C, add a term DijxCi
xCj

with Dij > 0; this is
permissible since in order for a clause to be satisfied, exactly
one variable must take value 1, whereas the other two are 0.
Numerical evidence for up to 15 bits suggests that the addition
of the new set of arbitrary parameters Dij may avoid the
Anderson localization issue (Choi, 2011). This example
illustrates a general principle that it can be incorrect to
conclude from the failure of one specific choice of the final
Hamiltonian that all quantum adiabatic algorithms fail for the
same problem.

E. Adding a catalyst Hamiltonian

We define a “catalyst” as a term that (1) vanishes at the
initial and final times, but is present at intermediate times,
(2) is a sum of local terms with the same qubit-interaction
graph as the final Hamiltonian H1, and (3) does not use any
other information specific to the particular instance.
Consider, e.g.,

HðsÞ ¼ ð1 − sÞH0 þ sð1 − sÞHC þ sH1: ð194Þ

The specific form of HC is of course important, but even a
randomly chosen catalyst can help (Farhi, Goldstone, and
Gutmann, 2002b; Farhi et al., 2011; Zeng, Zhang, and
Sarovar, 2016). We illustrate how HC can turn a slowdown
(exponential run time) into a success (at worst polynomial run
time) for a specific problem with a specific HC that is
analytically tractable. Consider a final Hamiltonian of the
form

H1 ¼
X
z

hðzÞjzihzj; ð195Þ

where z denotes an n-bit string, and hðzÞ ¼P
i<j<k h3ðzi; zj; zkÞ with

h3ðz1; z2; z3Þ ¼

8>>><
>>>:

0; z1 þ z2 þ z3 ¼ 0;

3; z1 þ z2 þ z3 ¼ 1;

1; z1 þ z2 þ z3 ¼ 2;

1; z1 þ z2 þ z3 ¼ 3.

ð196Þ

The all-zero bit string minimizes the final Hamiltonian with
energy 0.
The cost function hðzÞ is bit-permutation symmetric and

depends only on the Hamming weight jzj, which facilitates the
analysis. Specifically (Farhi, Goldstone, and Gutmann,
2002a),

hðzÞ ¼ 3
2
jzjðn − jzjÞðn − jzj − 1Þ þ 1

2
jzjðjzj − 1Þðn − jzjÞ

þ 1
6
jzjðjzj − 1Þðjzj − 2Þ: ð197Þ
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The final Hamiltonian can then be written in terms of the total
spin operators Sα ¼ ð1=2ÞPn

i¼1 σ
α
i by using the mapping

jzj ↦ n=2 − Sz. The initial Hamiltonian is taken to be

H0 ¼
ðn − 1Þðn − 2Þ

2

�
n
2
1 − Sx

�
ð198Þ

[the unconventional normalization is to ensure that both H1

andH0 scale similarly with n (Farhi et al., 2000)].HC is taken
to be identical for all combinations of 3 bits in order to
preserve the permutation symmetry:

HC ¼ −2nðSxSz þ SzSxÞ: ð199Þ
Note that this catalyst is nonstoquastic. A useful way to
characterize the change due to the introduction of HC is to
study the semiclassical potential associated with the
Hamiltonian:

Vðs; θ;φÞ ¼ hθ;φjHðsÞjθ;φi; ð200Þ
where jθ;φi is the spin-coherent state defined in Eq. (161). In
the large n limit we have (Farhi, Goldstone, and Gutmann,
2002b)

lim
n→∞

V=ð2=nÞ3 ¼ 2ð1 − sÞð1 − sin θ cosφÞ
þ 1

6
sð13þ 3 cos θ − 9cos2θ − 7cos3θÞ

− 8sð1 − sÞ cos θ sin θ cosφ; ð201Þ
where the three terms arise from the initial, final, and catalyst
Hamiltonians, respectively. We display the behavior of this
potential in Fig. 10. In the absence of HC, there is a value of s
where the potential has degenerate minima, and the system
must tunnel from the right well to the left well in order to
follow the global minimum. This point is associated with an
exponentially small gap (Farhi, Goldstone, and Gutmann,
2002a), i.e., the algorithm requires exponential time to follow
the global minimum. However, in the presence of HC the
potential never exhibits such an obstacle; there is always a
single global minimum that the system can follow from s ¼ 0

to s ¼ 1 with polynomial run time.
Using this method of introducing a catalyst Hamiltonian,

improvements were generally observed on a large number of
MAX 2-SAT instances of size n ¼ 20 (by directly solving the
Schrödinger equation) (Crosson et al., 2014). Both stoquastic
and nonstoquastic HC were tried and improved the success
rate, but the difference between stoquastic and nonstoquastic
was not decisive.
A similar study was performed by Hormozi et al. (2017)

on fully connected Ising instances H1 ¼
P

n
i¼1 hiσ

z
i þP

n
i¼j Jijσ

z
iσ

z
j of size n ≤ 17, where the Jij’s and hi’s were

picked from a continuous Gaussian distribution with zero
mean and unit variance. They observed that a stoquastic
catalyst generally improves the performance of easy instances
by boosting the minimum gap and reducing the number of
anticrossings. The fraction of instances affected tends to grow
with increasing problem size. This is in stark contrast to
nonstoquastic catalysts that tend to improve the performance
of the very hard instances, but the fraction of improved
instances remains constant with increasing problem size.

Furthermore, the gap does not generically increase with the
addition of this catalyst, and the number of anticrossings
grows. This latter feature leads to the increased success
probability as population lost from the ground state at one
anticrossing can be recovered at a later anticrossing.

F. Addition of nonstoquastic terms

The addition of nonstoquastic terms was already considered
numerically in the previous section; here we focus on
analytical results obtained for certain mean-field models.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 10. The diamonds represent the minima followed by a
polynomial run time. In the case withHC, the potential can follow
the global minimum polynomial time. In the case without HC,
there is an s value where the potential has a degenerate minimum,
and the algorithm cannot tunnel to the new global minimum in
polynomial time.
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Quantum statistical-mechanical techniques (Trotter-Suzuki
decomposition, replica method under the replica-symmetric
ansatz, and the static approximation) were used by Seki and
Nishimori (2012, 2015), Seoane and Nishimori (2012), and
Nishimori (2016) to analyze infinite-range Ising models with
ferromagnetic as well as random interactions. These studies
concluded that nonstoquastic terms can sometimes modify
first-order quantum phase transitions (with an exponentially
small gap) in the stoquastic Hamiltonian to second-order
transitions (with a polynomially small gap) in the modified,
nonstoquastic Hamiltonian.
The Hamiltonian is of the form

Hðs; λÞ ¼ ð1 − sÞH0 − s½λHðpÞ
1;z þ ð1 − λÞHðkÞ

1;x�; ð202Þ
where H0 ¼ −

P
n
i¼1 σ

x
i is a standard initial Hamiltonian, and

HðqÞ
1;α ¼ n

�
1

n

Xn
i¼1

σαi

�q

; α∈ fx;zg; q∈ fp;kg; ð203Þ

where λ ∈ ½0; 1� controls the strength of the nonstoquastic

termHðkÞ
1;x, and both p and k are integers ≥ 2 that determine the

locality of the model. The parameter λ is increased to 1 along
with s, so that the final Hamiltonian is the infinite-range

p-body ferromagnetic Ising model Hð1; 1Þ ¼ −HðpÞ
1;z . Also the

r-pattern Hopfield model was studied, where λHðpÞ
1;z is replaced

by −
P

1≤i1<���<ip≤n Ji1���ipσ
z
i1
� � � σzip, where Ji1���ip is given in

Eq. (143), with ξip being �1 with equal probability.
In the ferromagnetic case Seki and Nishimori (2012) and

Seoane and Nishimori (2012) showed that for p ≥ 4 a two-
local nonstoquastic XX term39 changes the first-order phase
transition to a second-order one, for an appropriately chosen
path in the ðλ; sÞ plane, starting from ðλ0; 0Þ (with arbitrary λ0)
and ending at (1,1). The situation in the Hopfield model case is
identical to the ferromagnetic case, for an extensive number of
patterns r ∝ n. For a fixed number of patterns p ≥ 5 is
sufficient and p > 3 is necessary in order to avoid first-order
phase transitions (Seki and Nishimori, 2015).

G. Avoiding perturbative crossings

An important slowdownmechanismwe already alluded to in
Sec. VII.C is due to anticrossings very close to the end of the
evolution that can result in an extremely small minimum gap.
These crossings are often referred to as perturbative, because a
perturbative expansion back in time from the final Hamiltonian
[e.g., perturbation theory in Γ for Eq. (142)] yields perturbed
states that cross in energy very close to where the exact
eigenstates anticross, with a gap that is exponentially small
in the Hamming weight of the unperturbed crossing states
(Amin and Choi, 2009) [shown there in the context of the
weighted maximum independent set problem; see also Foini,
Semerjian, and Zamponi (2010) and Farhi et al. (2011)]. This

problem of perturbative crossingswas demonstrated for theNP-
complete Exact Cover problem (recall Sec. VI.F.2) in Altshuler,
Krovi, and Roland (2010), who related the mechanism of
exponentially small spectral gaps to Anderson localization of
the eigenfunctions of HðsÞ in the space of the solutions. They
showed that the Hamming weight between such states can be
ΘðnÞ, which is clearly problematic for the adiabatic algorithm. It
was also claimed by Altshuler, Krovi, and Roland (2010) that
these anticrossings appear with high probability as the trans-
verse field goes to zero; however, the latter claim did not survive
a more accurate analysis that took into account the extreme
value statistics of the energy levels: the exponential degeneracy
of the ground state, which is a distinguishing feature of random
NP-complete problems with a discrete spectrum (such as Exact
Cover), dooms the proposed mechanism (Knysh and
Smelyanskiy, 2010; Knysh, 2016).
Nevertheless, this does not rule out the occurrence of

exponentially small gaps close to the end of the evolution.
Furthermore, it is plausible that the mechanism for avoided-
level crossings presented by Altshuler, Krovi, and Roland
(2010) may not necessarily be restricted to the end of the
evolution, but may occur throughout a many-body-localized
phase (Laumann et al., 2015). In light of this we now discuss a
rather general way to circumvent such perturbative crossings
that differs from the random initial Hamiltonian approach
presented in Sec. VII.C.
Using the NP-hard maximum independent set problem, it

was shown that this problem occurs only for one particular
implementation of the adiabatic algorithm, and different
choices can avoid the problem (Choi, 2010). In fact,
Dickson and Amin (2011) showed that there is always some
choice of the initial and final Hamiltonians that avoids such
perturbative crossings (note that this does not include non-
perturbative crossings). Furthermore, this choice can be made
efficiently, i.e., in polynomial time, space, and energy
(Dickson, 2011), as we now summarize.
The idea of Dickson (2011) was to cause the ground state to

diverge from all other states by changing the degeneracy of the
spectrum of the final Hamiltonian, such that the ground state is
the most degenerate, the first excited state less degenerate, up
to the highest excited state, which will be the least degenerate.
Consider an n-qubit Ising Hamiltonian of the form

H1 ¼
X
i∈M

hiσ
z
i þ

X
fi;jg∈M

Jijσ
z
iσ

z
j; ð204Þ

where hi, Jij ∈ f0;�1g, and M specifies the nonzero terms,
of which there are m. In order to simplify the analysis, assume
that there are no single bit-flip degeneracies, meaning that
there are no degenerate states that are Hamming distance one
from each other. For each nonzero hi term that the ground state
satisfies, i.e., hiσ

z
i ¼ −1, add a ≥ 1 ancilla qubits with an

interaction of the form

Hh ¼
Xa
k¼1

bðhiσzi þ 1Þðσzik þ 1Þ=2; ð205Þ

where fi1;…; iag ∈ Mh. This term vanishes when the term hi
is satisfied, regardless of the orientation of the a ancillas,
whereas otherwise it gives an energy bn1, where n1 is the

39This addition does not result in a truly nonstoquastic Hamil-
tonian; there exists a local unitary transformation that makes the
Hamiltonian stoquastic. Specifically, rotate σz to σx. In this new basis,
the Hamiltonian is stoquastic.
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number of ancillas pointing up. Note that when the term is
unsatisfied, when all ancilla spins point down the energy cost
is zero. This is important because we do not want to change
the energy of the ground state configuration.
Similarly, for each (nonzero) Jij, also add a ancillas with

the following interaction term:

HJ ¼
Xa
k¼1

ðJijσziσzj þ 1ÞðσzðijÞk þ 1Þ=2; ð206Þ

where fij1;…; ijag ∈ MJ. This introduces 3-local terms; it is
possible to use 2-local terms to achieve the same result at the
expense of introducing an additional ancilla for each term [see
the Appendix of Dickson (2011) for details].
The spectrum of the new Hamiltonian (with ma additional

ancilla qubits) is the original spectrum when all ancilla qubits
point down, and all the new energy states correspond to flips
of the ancilla qubits, with increased energy. Note that this
means that no new local minima were introduced. Now
consider the following adiabatic algorithm Hamiltonian:

H ¼ λH0 þH0
1; H0

1 ¼ H1 þHh þHJ; ð207Þ

with λ decreased from ∞ (proportional to abm suffices) to 0,
and where the initial Hamiltonian includes transverse fields on
the ancilla qubits:

H0 ¼ −
X

i∈M∪Mh∪MJ

σxi : ð208Þ

Consider a nondegenerate classical state α with energy Eα

under the action ofH1. It becomes degenerate under the action
of H0

1. Let jαi denote the uniform superposition over all these
degenerate states with energyEα. Introducing λ > 0 breaks the
degeneracy, and from first-order degenerate perturbation
theory (see Appendix E.1) the state jαi is the new lowest
energy eigenstate within the subspace spanned by the unper-
turbed degenerate states with energy Eα. The correction to its

energy is Ejαi ¼ Eα þ λEð1Þ
jαi þ � � �, where

Eα ¼ −ðNo. of terms inH0
1 satisfied by αÞ

þ ðNo. of terms inH0
1 unsatisfied by αÞ

¼ −2ðNo. of terms inH0
1 satisfied by αÞ þm ð209Þ

(recall that hi, Jij ∈ f0;�1g), and

Eð1Þ
jαi ¼ hαjH0jαi

¼ −aðNo. of terms inH0
1 satisfied by αÞ

¼ a
2
ðEα −mÞ: ð210Þ

Note that in Eα the contribution is entirely due to H1, while in

Eð1Þ
jαi the contribution is entirely due to Hh þHJ.

Taking a ¼ b ¼ n2, it can be shown that higher-order
corrections do not depend on a, and hence the first-order
correction dominates the behavior. Therefore, it is clear that a
state jαiwith a lower (final) energy than a state jβi has a larger

negative slope (first-order perturbation energy correction).
Therefore, the states jαi and jβi grow farther apart for λ > 0

according to first-order perturbation theory. This means that
the perturbative crossing is avoided.
This method works in general for the problem of finding the

ground state of an arbitrarily connected Ising model with local
fields and is fully stoquastic. Thus, all NP-complete problems
can be attacked using StoqAQC without encountering per-
turbative crossings. Of course, this does not prove that
StoqAQC can solve NP-complete problems in polynomial
time. However, it does mean that proving otherwise requires
identifying some effect other than perturbative crossings that
unavoidably results in exponentially long adiabatic run times.

H. Evolving nonadiabatically

Our discussion so far has been restricted to adiabatic
evolutions, where the minimum gap controls the efficiency
of the quantum algorithm. However, as we have seen with the
glued-trees problem in Sec. III.D, the quantum evolution can
take advantage of the presence of two avoided-level crossings
(and their associated exponentially small gaps) to leave and
return to the ground state with high probability in polynomial
time, whereas an adiabatic evolution would have required
exponential time. Setting aside the field of an open-system
AQC where relaxation can play a beneficial role in returning
the computation to the ground state [the subject of a separate
review (Albash and Lidar, 2018)], this is one among several
cases where nonadiabatic, i.e., diabatic evolution enhances the
performance of a quantum algorithm based on Hamiltonian
computation. Another example was given by Crosson et al.
(2014) [see also Hormozi et al. (2017)] where it was observed
that evolving rapidly (as well as starting from excited states)
increased the success probability on the hardest instances of
randomly generated n ¼ 20 MAX-2-SAT instances with a
unique ground state. When evolving rapidly, population leaks
into the first excited state before the avoided-level crossing
and then returns to the ground state after the avoided-level
crossing. An instance of this behavior is shown in Fig. 11.
A similar result was observed by Muthukrishnan, Albash,

and Lidar (2016) for a large class of perturbed Hamming
weight problems (recall Sec. VI.E.1), but with the difference
that the rapid evolution diabatically pushes the population to
higher excited states and then returns to the ground state
through a series of avoided-level crossings, a phenomenon
called “diabatic cascade.”
These results raise the question of whether adiabatic

evolution is in fact the most efficient choice for running a
quantum adiabatic algorithm. After all the goal is to find the
ground state once, with the highest probability and in the
shortest amount of time. Therefore, rather than maximizing
the probability by increasing the evolution time tf, we can
instead use many rapid repetitions of the algorithm to
simultaneously shorten tf and increase the success probability.
Let pSðtfÞ denote the single-run success probability of the
algorithm with evolution time tf. The probability of failing to
find the ground state after R independent repetitions is
ð1 − pSÞR, so the probability of succeeding at least once is
1 − ð1 − pSÞR, which we set equal to the desired probability
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pd. The trade-off between success probability and run time is
therefore well captured by the time-to-solution (TTS) metric,
which measures the time required to find the ground state at
least once with probability pd (typically taken to be 99%):

TTSðtfÞ ¼ tf
lnð1 − pdÞ

ln½1 − pSðtfÞ�
: ð211Þ

Other metrics exist that quantify this trade-off, e.g., without
insisting on finding the ground state (King et al., 2015), or that
make use of optimal stopping theory and assign a cost to each
run (Vinci and Lidar, 2016).
For pS ≲ 1 (close to the adiabatic limit), only a single (or

few) repetitions of the algorithm are necessary and the TTS
scales linearly with tf. As tf is lowered, the success prob-
ability typically decreases and more repetitions are necessary,
but the TTS may in fact be lower because of the smaller tf
value. The optimal tf for the algorithm minimizes the TTS and
is defined as

TTSopt ¼ min
tf>0

TTSðtfÞ: ð212Þ

Benchmarking of algorithms then proceeds as follows. For a
specific class of problem instances of varying sizes n, TTSopt
is calculated for each size n. The scaling of the algorithm with
n is then determined from the scaling with n of TTSopt, as
done by Boixo et al. (2014).
One benefit of this approach is in obtaining a quantum

scaling advantage over specific classical algorithms. For
example, the constant gap perturbed Hamming weight oracu-
lar problems (Reichardt, 2004) (see Sec. VI.D.1) and the spike
problem of Farhi, Goldstone, and Gutmann (2002a) (see
Sec. VI.E.1) with a polynomially closing quantum gap can

be solved in Oð1Þ time using a classical algorithm. However,
QA exhibits a scaling advantage over SA for these problems
in the sense that QA offers a TTS that scales better than
SA with single-spin updates (Muthukrishnan, Albash, and
Lidar, 2016).

VIII. OUTLOOK AND CHALLENGES

Adiabatic quantum computing has blossomed from a specu-
lative alternative approach for solving optimization problems to
a formidable alternative to other universal models of quantum
computingwith deep connections to both classical and quantum
complexity theory and condensed matter physics.
In this review we have given an account of most of the

major theoretical developments in the field. Of course, some
omissions were inevitable. For example, a potentially prom-
ising application of AQC is in quantum chemistry, where the
calculation of molecular energies can be formulated in terms
of a second-quantized fermionic Hamiltonian that is mapped,
via a generalized Jordan-Wigner transformation (Jordan and
Wigner, 1928; Bravyi and Kitaev, 2002), to a nonstoquastic
qubit Hamiltonian (Aspuru-Guzik et al., 2005; Seeley,
Richard, and Love, 2012). This mapping generates k-local
interactions, but perturbative gadgets can be used to reduce the
problem to only 2-local interactions (Babbush, Love, and
Aspuru-Guzik, 2014). The ground state of the mapped
Hamiltonian can then be prepared using adiabatic evolution
followed by appropriate measurements to determine the
energy spectrum. However, the scaling of the minimum
gap for such a preparation procedure is not known, and hence
this is an example of AQC with a nonstoquastic Hamiltonian
for which it is unknown whether a quantum speedup is
possible. A variety of other interesting AQC results with an
unknown speedup, and which we did not have the space to
review here in detail, can be found in Kurihara, Tanaka, and
Miyashita (2014), Rajak and Chakrabarti (2014), Sato et al.
(2014), Hashizume et al. (2015), Inack and Pilati (2015),
O’Gorman et al. (2015), Behrman and Steck (2016), Cao et al.
(2016), Chancellor (2016), Dulny and Kim (2016), Durkin
(2016), Goto (2016), Karimi and Rosenberg (2016), Karimi
and Ronagh (2016), Miyahara and Tsumura (2016),
Raymond, Yarkoni, and Andriyash (2016), Rosenberg et al.
(2016), and Santra, Shehab, and Balu (2016).
Moreover, to make the review comprehensive and detailed

enough to be self-contained, we focused only on the closed-
system setting, thus completely ignoring the important problem
of AQC in open systems, with the associated questions of error
correction and fault tolerance.We also left out the experimental
work on AQC and quantum annealing. These important topics
are the subject of a separate review (Albash and Lidar, 2018).
Because of the prominence of stoquastic Hamiltonians in the

body of work onAQC,we coined a new term, StoqAQC,which
is roughly what was meant when the term “quantum adiabatic
algorithm”was first introduced. Correspondingly, we devoted a
substantial part of this review to StoqAQC, despite the fact that
there are indications that this model of computation may not be
more powerful than classical computing. Its prominence is
explained by the fact that it is easier to analyze than universal
AQC, which requires nonstoquastic terms, and by the fact that it
is easier to implement experimentally (Bunyk et al., 2014;
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FIG. 11. Overlap squared of the evolved wave function jψðtÞi
and the instantaneous ground state jψ0ðtÞi and first excited state
jψ1ðtÞi for an instance of MAX-2-SAT with n ¼ 20 and with a
total time T ¼ 10. Because of the rapid evolution, population
leaks out of the ground state and hence the decrease in the ground
state population. There is an avoided-level crossing at approx-
imately t=T ¼ 0.65, where the population between the ground
state and first excited state is effectively swapped. Therefore, if
more substantial leaking into the first excited state occurs, this
will lead to an increase in probability of finding the ground state
at the end of the evolution. From Crosson et al., 2014.
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Weber et al., 2017). The relatively short history of AQC has
witnessed a battle between attempts to show that StoqAQC fails
to deliver quantum speedups and corresponding refutations by
clever tweaks. To put this and other results discussed in
perspective, we conclude with a list of ten key theoretical
challenges for the field of AQC:

(1) Prove or disprove that StoqAQC is classically effi-
ciently simulatable.

(2) Find an NP-hard optimization for which AQC gives a
quantum speedup in the worst case.

(3) Find a class of nonoracular, physically realizable
optimization problems for which AQC gives a quan-
tum speedup.

(4) Identify a subset of nonstoquastic Hamiltonians for
which ground state preparation can be done efficiently
using adiabatic evolution.

(5) Formulate every quantum algorithm that gives a speedup
in the circuit model natively as an AQC algorithm (i.e.,
directly without using perturbative gadgets).

(6) Find a problem that can be solved with a quantum
speedup using AQC that was not previously known
from other models of quantum computing.

(7) Give a way to decide whether adiabatic evolution gives
rise to a stronger or weaker speedup than nonadiabatic
(diabatic) evolution for a given problem.

(8) Predict the optimal adiabatic schedule for a given
problem without a priori knowledge of the size and/or
position of its spectral gap.

(9) Prove or disprove that tunneling can generate a
(scaling, not prefactor) quantum speedup in AQC.

(10) Establish the relation between entanglement and
quantum speedups using AQC.

Solving these problems will likely keep researchers busy for
years to come, require interdisciplinary collaborations, and will
significantly advance our understanding of AQC. We hope that
this review will catalyze new and productive approaches,
enhancing our repertoire of algorithms that give rise to quantum
speedups from the unique perspective of AQC.
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APPENDIX A: TECHNICAL CALCULATIONS

1. Upper bound on the adiabatic path length L

Right below Eq. (14) we claimed that an upper bound on L
is maxsk _HðsÞk=Δ. To see this differentiate the eigenstate
equation Hjεai ¼ εajεai for the normalized instantaneous
eigenstate jεai and inner multiply by hεbj, with b ≠ a, to
get ðεa − εbÞhεbj_εai ¼ hεbj _Hjεai. Let Δba ¼ εb − εa and
Δa ¼ minbminsΔbaðsÞ. Using our phase choice

j_εai ¼
X
b

jεbihεbj_εai ¼
X
b≠a

jεbihεbj_εai

¼ −
X
b≠a

jεbihεbj _Hjεai=Δba: ðA1Þ

Thus

kj_εaik ≤
1

Δa

				X
b≠a

jεbihεbj _Hjεai
				

≤
1

Δa

				X
b≠a

jεbihεbj
				k _Hjεaik ≤

1

Δa
k _Hjk; ðA2Þ

where in the last equality we used the definition of the
operator norm and the fact that

P
b≠a jεbihεbj is a projector.

Integration just multiplies by 1.

2. Proof of the inequality given in Eq. (25)

Note that

k∂sH½AðsÞ�k ¼ j∂sAjkH1 −H0k ≤ 2j∂sAj; ðA3aÞ

k∂2
sH½AðsÞ�k ≤ 2j∂2

sAj ðA3bÞ

for the interpolating Hamiltonian (16). Also note that

∂2
sAðsÞ ¼ cpΔp−1½AðsÞ� dΔ

dA
∂sAðsÞ ðA4aÞ

¼ c2p
dΔ
dA

Δ2p−1½AðsÞ�: ðA4bÞ

Thus,

Z
1

0

�k∂2
sH½AðsÞ�k
Δ2½AðsÞ� þ k∂sH½AðsÞ�k2

Δ3½AðsÞ�
�
ds

≤ 2

Z
1

0

� j∂2
sAj

Δ2½AðsÞ� þ
2j∂sAj2
Δ3½AðsÞ�

�
ds ðA5aÞ

¼
Z

1

0

2c2
�
p
dΔ
dA

þ 2

�
Δ2p−3½AðsÞ�ds ðA5bÞ

¼ 2c
Z

1

0

�
p
dΔ
du

þ 2

�
Δp−3ðuÞdu ðA5cÞ

¼ 4c
Z

1

0

Δp−3ðuÞdu; ðA5dÞ
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where in Eq. (A5c) we used the change of variables u ¼ AðsÞ,
so that ds ¼ du=∂sA ¼ du=cΔpðuÞ, and in Eq. (A5d) we
used BðpÞ≡ 2c

R
1
0 Δp−3dΔ ¼ 0, since Bð2Þ ¼ 2c ln½Δð1Þ=

Δð0Þ� ¼ 0 and Bðp ≠ 2Þ ¼ ½2c=ðp − 2Þ�½Δp−2ð1Þ − Δp−

2ð0Þ� ¼ 0, due to the boundary conditions Δð0Þ ¼ Δð1Þ ¼
1 [Eq. (18a)].

APPENDIX B: A LOWER BOUND FOR THE ADIABATIC
GROVER SEARCH PROBLEM

Here we show that there is no schedule that gives a better
scaling for the adiabatic Grover problem than the one
discussed in Sec. III.A.2, resulting in a quadratic quantum
speedup. The argument is due to Roland and Cerf (2002),
which in turn is based on the general Hamiltonian quantum
computation argument by Farhi and Gutmann (1998).
To show this, consider two different searches, one form and

another for m0. We do not allow the schedule to depend on m,
i.e., the same schedule must apply to all marked states. Let us
denote the states for each at the end of the algorithm by
jψmðtfÞi and jψm0 ðtfÞi. In order to be able to distinguish if the
search gave m or m0, we must require that jψmðtfÞi and
jψm0 ðtfÞi are sufficiently different. Let us define the distance
(or infidelity)

Dmm0 ðtÞ≡ 1 − jhψmðtÞjψm0 ðtÞij2 ðB1Þ

[note that Dmm0 ð0Þ ¼ DmmðtÞ ¼ 0] and demand that

Dmm0 ðtfÞ ≥ ϵ; m ≠ m0: ðB2Þ

First, we have a lower bound on the sum

X
m;m0

Dmm0 ðtfÞ ¼
X
m≠m0

Dmm0 ðtfÞ

≥
X
m≠m0

ϵ ¼ NðN − 1Þϵ: ðB3Þ

Next, let us find an upper bound on the sum. We write the
Hamiltonian (16) explicitly as HðtÞ ¼ 1 − ½1 − AðtÞ�jϕi×
hϕj þH1mðtÞ, where H1mðtÞ ¼ −AðtÞjmihmj.40 Then

d
dt

Dmm0 ðtÞ ¼ 2ℑ½hψmjðH1m −H1m0 Þjψm0 ihψm0 jψmi�
≤ 2jhψmjðH1m −H1m0 Þjψm0 ihψm0 jψmij
≤ 2jhψmjH1mjψm0 ij þ 2jhψmjH1m0 jψm0 ij: ðB4Þ

Let us now sum over all m and m0:

X
m;m0

d
dt
Dmm0 ðtÞ≤4

X
m;m0

jhψmjH1mjψm0 ij

≤4
X
m;m0

kH1mjψm0 ikkjψmik¼4
X
m;m0

kH1mjψm0 ik;

ðB5Þ

where we first used the fact that under the sum the two terms in
the last line of Eq. (B4) are identical, and then we used the
Cauchy-Schwartz inequality (jhxjyij ≤ kxkkyk). Now we note
thatX
m

kH1mjψm0 ik2 ¼
X
m

hψm0 jH1mH1mjψm0 i

¼ A2ðtÞ
X
m

hψm0 jmihmjψm0 i ¼ A2ðtÞ; ðB6Þ

so that�X
m
kH1mjψm0 ik

�
2

¼ ðx⃗ · y⃗Þ2 ≤ ðx⃗ · x⃗Þðy⃗ · y⃗Þ ¼ NA2ðtÞ;

ðB7Þ
where x⃗ ¼ ðkH11jψm0 ik; kH12jψm0 ik;…; kH1N jψm0 ikÞ and
y⃗ ¼ ð1; 1;…; 1Þ. Therefore, we have

X
m;m0

d
dt

Dmm0 ðtÞ ≤ 4
X
m;m0

kH1mjψm0 ik

≤ 4
X
m0

ffiffiffiffi
N

p
AðtÞ ¼ 4N

ffiffiffiffi
N

p
AðtÞ: ðB8Þ

If we integrate both sides, we have

X
m;m0

Dmm0 ðtfÞ ≤ 4N
ffiffiffiffi
N

p Z
tf

0

AðtÞdt ≤ 4N
ffiffiffiffi
N

p
tf: ðB9Þ

Combining this with Eq. (B3), we have NðN − 1Þϵ ≤
4N

ffiffiffiffi
N

p
tf, and hence

tf ≥
ϵ

4

N − 1ffiffiffiffi
N

p ; ðB10Þ

so that the computation must last a minimum time of Oð ffiffiffiffi
N

p Þ
if the schedule is to be agnostic about the identity of the
marked state. Therefore, the solution using the locally
optimized schedule is asymptotically optimal.

APPENDIX C: TECHNICAL DETAILS FOR THE PROOF
OF THE UNIVERSALITY OF AQC USING THE HISTORY
STATE CONSTRUCTION

We add details to the proof sketch given in Sec. IV.B.

1. jγð0Þi is the ground state of Hinit

Let us first check that jγð0Þi is the ground state of
Hinit with eigenvalue 0. Note that Hinit is a sum of
projectors, so it is positive semidefinite. Therefore if we
find a state with energy 0, then it is definitely a ground
state. The all-zero clock state is annihilated by Hc, Hinput,

40Optimality applies to arbitrary driving Hamiltonians. Hence the
lower bound holds more generally and does in fact not require the
initial Hamiltonian to be a projector onto the uniform superposition
as we have done here for simplicity.

Tameem Albash and Daniel A. Lidar: Adiabatic quantum computation

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015002-52



and Hc-init, so we have Hinitjγð0Þi ¼ 0, i.e., jγð0Þi is a
ground state of Hinput. We show later that it is a unique
ground state.

2. jηi is a ground state of Hfinal

Next we check that jηi is a ground state of Hfinal with
eigenvalue 0. First we show thatHfinal is positive semidefinite.
We already know that Hinput and Hc are positive semidefinite,
so we only need to show this to be the case for the Hl’s. This
follows since it is easily checked that Hl ¼ H†

l ¼ ð1=2ÞH2
l,

so that

hXjHljXi ¼ 1
2
hXjH†

lHljXi ¼ 1
2
kHljXik2 ≥ 0.

ThusHðsÞ is positive semidefinite, since it is a sum of positive
semidefinite terms.
Let us now check that Hfinal annihilates jηi. First, because

jηi involves only legal clock states, it is annihilated by Hc.
Next,

Hinputjηi ¼ Hinput
1ffiffiffiffiffiffiffiffiffiffiffiffi

Lþ 1
p jαð0Þi ⊗ j0Lic ¼ 0: ðC1Þ

Finally, note that the only nonzero terms in
P

L
l¼0 Hljηi are of

the form

Hljαðl − 1Þi ⊗ j1l−10L−lþ1ic
¼ jαðl − 1Þi ⊗ j1l−10L−lþ1ic − jαðlÞi ⊗ j1l0L−lic;

ðC2aÞ

HljαðlÞi ⊗ j1l0L−lic
¼ −jαðl − 1Þi ⊗ j1l−10L−lþ1ic þ jαðlÞi ⊗ j1l0L−lic;

ðC2bÞ

which cancel. Therefore, jηi has eigenvalue 0 and is a ground
state of Hfinal.

3. Gap bound in the space spanned by fjγðlÞigLl= 0

Let S0 be the space spanned by fjγðlÞigLl¼0. Let us show
that HðsÞ acting on any state in S0 keeps it in this subspace:

HcjγðlÞi ¼ 0; ðC3aÞ

HinputjγðlÞi ¼ 0; ðC3bÞ

Hc-initjγðlÞi ¼
�
0; l ¼ 0;

jγðlÞi; l ≠ 0;
ðC3cÞ

Hljγðl0Þi ¼ δl0;l½jγðl − 1Þi − jγðlÞi�
þ δl0;l½jγðlÞi − jγðl − 1Þi�: ðC3dÞ

Since the initial state jγð0Þi ∈ S0, the dynamics generated by
HðsÞ keep the state in S0. Thus, it is sufficient to bound the
gap in this subspace. In the basis given by fjγðlÞigLl¼0, we can
write an ðLþ 1Þ × ðLþ 1Þ matrix representation of the
Hamiltonian in the S0 subspace, which using Eq. (C3) is

HS0
ðsÞ ¼ ð1 − sÞ

0
BBBBBBBBB@

0 0 0 � � �
0 1 0

1

. .
.

1 0

1

1
CCCCCCCCCA

þ s

0
BBBBBBBBBB@

1
2

− 1
2

0 0 � � � 0

− 1
2

1 − 1
2

0 − 1
2

1 − 1
2

..

. . .
. . .

. . .
.

− 1
2

1 − 1
2

0 − 1
2

1
2

1
CCCCCCCCCCA
: ðC4Þ

a. Bound for s < 1=3

Let us first bound the gap for s < 1=3. The Gerschgorin
circle theorem states (Gershgorin, 1931):
Let A be any matrix with entries aij. Consider the disk Di

(for 1 ≤ i ≤ n) in the complex plane defined as
Di ¼ fzjjz − aiij ≤

P
j≠i jaijjg. Then the eigenvalues of A

are contained in ∪iDi and any connected component of ∪iDi
contains as many eigenvalues of A as the number of disks that
form the component.
Consider the cases i ¼ 1, i ¼ Lþ 1, and i ≠ 1, Lþ 1

separately. Note that when s < 1=3:

½HS0
ðsÞ�

11
¼ 1

2
s <

1

6
;

X
j≠1

ja1jj ¼
1

2
s <

1

6
; ðC5aÞ

½HS0
ðsÞ�Lþ1;Lþ1

¼ 1 −
1

2
s > 5=6

X
j≠Lþ1

jaLþ1;jj ¼ s <
1

3
; ðC5bÞ

½HS0
ðsÞ�ii ¼ 1; i ≠ 1; Lþ 1X

j≠i
ja1jj ¼

1

2
s <

1

3
: ðC5cÞ

Therefore, we can identify a disk D1 centered at z ≤ 1=6 on
the real line with radius ≤ 1=6. The closest possible disk to it
which does not overlap it is the disk DLþ1 centered at z ≥ 5=6
with a radius ≤ 1=3. Therefore, since no disks intersect D1, it
covers the smallest values on the real line, and it follows that
the ground state for s < 1=3 is unique. Furthermore, we
learned that the minimum gap is a constant of at least 1=6,
since that is the closest distance between D1 and DLþ1. (This
also proves that jγð0Þi is the unique ground state at s ¼ 0.)

b. Bound for s ≥ 1=3

Now let s ≥ 1=3 and consider the matrix representation of
GðsÞ≡ 1 −HS0

ðsÞ in the same basis:
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GðsÞ ¼

0
BBBBBBBB@

1 − 1
2
s 1

2
s

1
2
s 0 1

2
s

. .
. . .

. . .
.

0 1
2
s

1
2
s 1

2
s

1
CCCCCCCCA
: ðC6Þ

This matrix is Hermitian and has all non-negative real entries
for 0 < s ≤ 1. Note that increasing powers ofGðsÞ fill more of
the matrix, and GðsÞLþ1 has all positive entries for 0 < s ≤ 1.
We can thus invoke Perron’s theorem:
Let G be a Hermitian matrix with real non-negative entries.

If there exists a finite k such that all entries of Gk are positive,
then G’s largest eigenvalue is positive and all other eigen-
values are strictly smaller in absolute value. The eigenvector
corresponding to the largest eigenvalue is unique, and all its
entries are positive.
Therefore, by Perron’s theorem, GðsÞ’s largest eigenvalue μ

must be positive, and the associated unique eigenvector α⃗ ¼
ðα1;…; αLþ1Þ has αi > 0. Let us use this to define a matrix P
with entries

Pij ¼
αj
μαi

Gij ≥ 0;

such that

X
j

Pij ¼
1

μαi

X
j

Gijαj ¼ 1; ðC7Þ

where we used the fact that α⃗ is an eigenvector of G with
eigenvalue μ. Thus P is a stochastic matrix (it has only non-
negative entries and its rows sum to 1). Now note that if
ðα1v1;…; αLþ1vLþ1Þ is a left eigenvector of P with eigen-
value ν=μ, then ðv1;…; vLþ1Þ is an eigenvector of G with
eigenvalue ν:

ν

μ
αjvj ¼

X
i

αiviPij ¼
X
i

vi
αj
μ
Gij ¼

αj
μ

X
i

Gjivi

⇒ νvj ¼
X
i

Gjivi: ðC8Þ

It is straightforward to check that the reverse also holds: if
ðv1;…; vLþ1Þ is an eigenvector of G with eigenvalue ν, then
ðα1v1;…; αLþ1vLþ1Þ is a left eigenvector of P with eigenvalue
ν=μ. By taking v⃗ ¼ α⃗, which corresponds to the largest

eigenvalue (ν ¼ μ) of G, it then follows that α⃗2 ¼
ðα21;…; α2Lþ1Þ is a left eigenvector of P with the maximal

eigenvalue 1. If we normalize α⃗2, i.e., define

Π⃗ ¼ 1

Z
ðα21;…; α2Lþ1Þ; Z ¼

X
i

α2i ; ðC9Þ

then Π⃗ is the limiting distribution of P, i.e., PΠ⃗ ¼ Π⃗. We can
then relate the energy gap between the highest and second
highest eigenvalue (let us denote it by δ=μ) ofP to the energygap
between the ground state energy ofH (given by 1 − μ ¼ λ) and
the first excited state (given by 1 − δ)

ΔlargestðPÞ ¼ 1 −
δ

μ
¼ μ − δ

μ
¼ ΔðHS0

Þ
1 − λ

; ðC10Þ

where “largest” denotes the gap from the largest eigenvalue ofP
to the next largest eigenvalue. We bound the gap of P and hence
of HðsÞ. Let us define a nonempty set B ⊆ f1; 2;…; Lþ 1g
satisfying

P
i∈B Πi ≤ 1=2, where Πi are the entries of Π⃗. Then

the conductance φðPÞ is defined as

φðPÞ ¼ min
B

FðBÞ
ΠðBÞ ; ðC11Þ

where

FðBÞ ¼
X
i∈B

X
j∉B

ΠiPij; ðC12aÞ

ΠðBÞ ¼
X
i∈B

Πi: ðC12bÞ

The conductance bound (Sinclair and Jerrum, 1989) then
states that

ΔlargestðPÞ ≥ 1
2
φðPÞ2: ðC13Þ

To use the result of the conductance bound, we show that
the ground state of HðsÞ [and hence the eigenstate associated
with the largest eigenvalue of GðsÞ] is monotone, i.e., that
α1 ≥ α2 ≥ � � � ≥ αLþ1 ≥ 0. The case s ¼ 0 is obvious, so
consider s > 0. First note that GðsÞ applied to a monotone
vector generates a monotone vector, i.e., GðsÞ preserves
monotonicity. To see this consider GðsÞv⃗ ¼ w⃗ with v⃗ mono-
tone. The components of w⃗ are given by

w1 ¼ ð1 − 1
2
sÞv1 þ 1

2
sv2; ðC14aÞ

wk ¼ 1
2
svk−1 þ 1

2
svkþ1; 2 ≤ k ≤ L; ðC14bÞ

wLþ1 ¼ 1
2
svL þ 1

2
svLþ1. ðC14cÞ

Therefore we have

w1 − w2 ¼ ð1 − sÞv1 þ 1
2
sðv2 − v3Þ; ðC15aÞ

wk − wkþ1 ¼ 1
2
sðv1 − v2 þ v3 − v4Þ; 2 ≤ k ≤ L − 1;

ðC15bÞ

wL − wLþ1 ¼ 1
2
sðvL−1 − vLÞ; ðC15cÞ

which clearly are all ≥ 0 by the monotonicity of v⃗ and s ≤ 1.
Therefore w⃗ is also monotone.
Recall that GðsÞ is Hermitian, so it has an orthonormal set

of eigenvectors fjviigLþ1
i¼1 with eigenvalues μi, where jv1i ¼ α⃗

and μ1 ¼ μ.41 Because these eigenvectors form a basis we can
always find a set of coefficients fcigLþ1

i¼1 such that

41Note that we abuse notation and mix kets with standard vectors
here and also do not use transpose notation to distinguish column
from row vectors.
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X
i

cijvii ¼ ð1;…; 1Þ ¼ 1⃗: ðC16Þ

Then

�
1

μ1
GðsÞ

�
kX

i

cijvii ¼
X
i

�
μi
μ1

�
k
cijvii ðC17aÞ

⇒

�
1

μ1
GðsÞ

�
k
1⃗
T ¼

X
i

�
μi
μ1

�
k
1⃗
T: ðC17bÞ

Using jμij < μ1 by Perron’s theorem, we have from
Eq. (C17a) that

lim
k→∞

�
1

μ1
GðsÞ

�
kX

i

cijvii ¼ c1jv1i. ðC18Þ

Since the quantities

�
1

μ1
GðsÞ

�
k

(for k ≥ Lþ 1),
P

i cijvii ¼ 1⃗, and jv1i ¼ α⃗ are all positive, it

follows that also c1 > 0. Since 1⃗ is monotone and GðsÞ
preserves monotonicity, we have finally established that
jv1i ¼ α⃗ is monotone. This then implies that Π⃗ [Eq. (C9)]
is monotone.
We are ready to calculate the conductance φðPÞ. First

consider the case where the first index (of Π⃗) is in the set B,
i.e., 1 ∈ B. Let k be the smallest index such that k ∈ B but
kþ 1∉B. (Note that from the form of P, only P11, Pj;jþ1,
PLþ1;Lþ1 are nonzero.) Then we have the following for FðBÞ:

FðBÞ ¼
X

i∈B;i≠k

X
j∉B

ΠiPij þ ΠkPk;kþ1 ≥ ΠkPk;kþ1

¼ Πk

ffiffiffiffiffiffiffiffiffiffi
Πkþ1

p
μ

ffiffiffiffiffiffi
Πk

p ½GðsÞ�k;kþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠkΠkþ1

p
1 − λ

½GðsÞ�k;kþ1

≥
Πkþ1

1 − λ
½GðsÞ�k;kþ1; ðC19Þ

where the last inequality follows from the monotonicity of Π⃗.
Because 0 < 1 − λ ≤ 1, and ½GðsÞ�k;kþ1 ¼ ð1=2Þs ≥ 1=6 for
s ≥ 1=3, it follows that

FðB ¼ f1; others; kgÞ ≥ Πkþ1

6
: ðC20Þ

Since by definition ΠðBÞ ≤ 1=2, then ΠðB̄Þ ≥ 1=2 where B̄ is
the complement of B, but since the largest possible size of B̄ is
L (recall that 1 ∈ B), it follows that ΠðB̄Þ ≤ LΠkþ1, so that
Πkþ1 ≥ 1=ð2LÞ, and hence

FðB ¼ f1; others; kgÞ
ΠðBÞ ≥

1

6L
: ðC21Þ

Next consider the case where 1∉B. Now let k be the smallest
index such that k∉B but kþ 1 ∈ B. Then

FðBÞ ¼
X

i∈B;i≠kþ1

X
j∉B

ΠiPij þ Πkþ1Pkþ1;k ðC22aÞ

≥ Πkþ1Pkþ1;k ≥
Πkþ1

6
: ðC22bÞ

In this case, since the maximum size of B is L but it excludes
the index 1, we have ΠðBÞ ≤ LΠkþ1, so that FðBÞ ≥
ΠðBÞ=ð6LÞ. Therefore, we again find the condition (C21).
Thus, by the conductance bound [Eq. (C13)]

ΔðPÞ ¼ ΔðHS0
Þ

1 − λ
≥
1

2

�
1

6L

�
2

: ðC23Þ

Now since λ is the ground state of HS0
, for any state in

jvi ∈ S0, we must have hvjHS0
jvi ≥ λ. In particular,

hγð0ÞjHS0
jγð0Þi ¼ 1

2
s ≥ λ; ðC24Þ

i.e., λ ≤ 1=2. This finally yields Eq. (78).

4. Gap bound in the entire Hilbert space

Let us now go a step further and show how the global gap
(i.e., not restricted to the S0 subspace) scales with L. Let S
denote the subspace spanned by all legal clock states. The
dimensions of this subspace are dimðSÞ ¼ ðLþ 1Þ2n, since
we have Lþ 1 legal clock states and 2n computational states.
HðsÞ acting on any state in S does not generate any illegal
clock states, so for any jvi ∈ S we have HðsÞjvi ∈ S.
Similarly, for any state in the orthogonal subspace S⊥, i.e.,
the subspace of illegal clock states, for any state jv⊥i ∈ S⊥,
we have HðsÞjv⊥i ∈ S⊥. Therefore, the eigenstates of HðsÞ
below either to S or to S⊥, and HðsÞ is block diagonal with
blocks HSðsÞ and HS⊥ðsÞ that can be diagonalized
independently.
Let us first restrict to HS⊥ðsÞ. Hc penalizes all illegal clock

states by at least one unit of energy and acts as the identity on
the computational qubits. Therefore, it shifts the entire
spectrum of S⊥ by at least one unit of energy. Since the
remaining terms are positive semidefinite, they cannot lower
the energy. Therefore, regardless of the form of the ground
state in the subspace, it has an energy of at least one unit.
Let us now restrict to HSðsÞ and define

jγjðlÞi ¼ jαjðlÞi ⊗ j1l0L−lic; ðC25Þ

where jαjðlÞi is the state of the circuit at time l had the input
state been given by the binary representation of j (e.g., if
j ¼ 4, the input configuration of the circuit would have been
j0n−3130201i). Note that jγ0ðlÞi ¼ jγðlÞi. Let Sj denote the
space spanned by fjγjðlÞigLl¼0

. SinceHSðsÞ cannot mix states
with different j subindices (it can only propagate forward or
backward in l), HSðsÞ is block diagonal in the subspaces Sj.
Therefore, we only need to find the minimum ground state
energy of HSj>0

ðsÞ to determine the minimum gap
from HS0

ðsÞ.
In order to determine the ground state energy of HSj

, we
can write
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HSj
ðsÞ ¼ H0ðsÞ þHSj;input; j > 0; ðC26Þ

where H0ðsÞ has exactly the same spectral properties as HS0

except in the Sj subspace. The reason for this decomposition
is because Hinput is zero in S0 and hence is absent from
HS0

ðsÞ. Note that

HSj;inputjγjðlÞi ¼
�
kjγjð0Þi; l ¼ 0;

0; l > 0
ðC27Þ

(recall that Hinput projects onto the 0 clock state, which is why
for l > 0 we have zero.) Therefore, in the basis fjγjðlÞigLl¼0

,
we can write the matrix representation of HSj;input as

HSj;input ¼

0
BBBBB@

k 0

0

. .
.

0 0

1
CCCCCA; ðC28Þ

where k ≥ 1 denotes the number of 1’s in the binary
representation of j > 0. In particular, note that it is diagonal
in this basis. We now use the geometrical lemma (Kitaev,
Shen, and Vyalyi, 2000; Aharonov and Naveh, 2002):
Lemma 4: Geometrical lemma. Let H1 and H2 be two

Hamiltonians with ground state energies g1 and g2, res-
pectively. Both Hamiltonians have a ground state energy
gap to the first excited state that is larger than Λ. Let the
angle between the two ground subspaces be θ.42 Then the
ground state energy (g0) of H0 ¼ H1 þH2 is at least
g1 þ g2 þ Λð1 − cos θÞ.
Let H1 ¼ H0 and H2 ¼ HS1;input. We saw that the ground

state gap of H1 is Ωð1=L2Þ and that of H2 is 1, so we can take
Λ ¼ Ωð1=L2Þ. The ground state energy of H2 is g2 ¼ 0.
Therefore, using the geometrical lemma, we have g0 − g1 ≥
Λð1 − cos θÞ. It remains to bound the angle between the two
ground spaces. From Eq. (C28), it is clear that the (degenerate)
ground state of H2 can be written as a linear combination of
fjγjðlÞigLl¼1

, whereas the (unique) ground state of H1 can be
written as a monotone vector in fjγjðlÞigLl¼0

. Therefore,

cos θ ¼ max
fcl0 g





XL
l¼0

αlhγjðlÞj
XL
l0¼1

cl0 jγjðl0Þi






¼ max
fcl0 g





XL
l¼1

αlclhγjðlÞjγjðlÞi






≤ max
fcl0 g

XL
l¼1

αljclj ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
L

Lþ 1

r
≤ 1 −

1

2L
; ðC29Þ

where we have used that α⃗ is monotone so that cl ¼
αl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1=L

p
maximizes the sum. Therefore, the global gap

can be bounded from below by Ωð1=L3Þ, which is Eq. (79).

APPENDIX D: PROOF OF THE AMPLIFICATION
LEMMA (CLAIM 1)

To prove Claim 1, define a new verifier V�ðη; XÞ which
amounts to repeating Vðη; XÞK times, whereK ¼ polyðjηjÞ to
keep the verifier efficient, and taking a majority vote on the
output, i.e., Pr (V�ðη; XÞ ¼ 1) ¼ Pr ðPK

i¼1 Vi > K=2Þ, where
Vi ∈ f0; 1g is the random number associated with the ith run
of Vðη; XÞ.
Now recall the multiplicative Chernoff bound:

Pr

�XK
i¼1

Yi ≤ ð1 − βÞKp
�

≤ e−β
2Kp=2; 0 < β < 1;

Pr

�XK
i¼1

Yi ≥ ð1þ βÞKp
�

≤ e−β
2Kp=ð2þβÞ; 0 < β; ðD1Þ

for p ¼ EðYÞ where Y ∈ f0; 1g is a random variable.
Consider first the case where QðηÞ ¼ 1. In that case,
p ≥ 2=3. If we now pick β ¼ 1 − 1=ð2pÞ (i.e.,
1=4 ≤ β ≤ 1=2) in the Chernoff bound, then

Pr

�XK
i¼1

Vi >
K
2

�
¼1−Pr

�XK
i¼1

Vi≤
K
2

�

≥1−e−ðp−1=2Þ2K=2p≥1−e−ð2=3−1=2Þ2K=4=3:

ðD2Þ

For the case where QðηÞ ¼ 0, p ≤ 1=3, take
β ¼ 1=ð2pÞ − 1 > 0, so that

Pr

�XK
i¼1

Vi >
K
2

�

≤ Pr

�XK
i¼1

Vi ≥
K
2

�

≤ e−ðp−1=2Þ2K=pðpþ1=2Þ ≤ e−ð1=3−1=2Þ2K=ð1=3þ1=2Þ=3: ðD3Þ

This shows that MAð2=3; 1=3Þ ¼ MAð1 − e−jηjg ; e−jηjgÞ, since
K ¼ polyðjηjÞ.
To show that MAðc; c − 1=jηjgÞ ⊆ MAð2=3; 1=3Þ, it is

sufficient to show that when QðηÞ ¼ 0 it is exponentially
unlikely that Merlin is able to fool Arthur so that
QðηÞ ¼ 1. Therefore consider the probability of fooling
Arthur, i.e., Pr (V�ðη; XÞ ¼ 1) > c when QðηÞ ¼ 0. Take
p ¼ Pr (Vðη; XÞ ¼ 1) ¼ c − 1=jηjg. Then

PrðArthur fooledÞ ¼ Pr

�XK
i¼1

Vi ≥ Kc

�

¼ Pr

�
1

K

XK
i¼1

Vi ≥ pþ ϵ

�
; ðD4Þ

where we take ϵ ¼ 1=jηjg. Recall the additive Chernoff bound

Pr

�
1

K

XK
i¼1

Yi ≥ pþ ϵ

�
≤ e−KDðpþϵkpÞ; ðD5Þ42The angle θ is defined via cos θ ¼ maxv1 ;v2 jhv1jv2ij, where jvii

belongs to space i.
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where

DðxkyÞ ¼ x ln
x
y
þ ð1 − xÞ ln 1 − x

1 − y
ðD6Þ

is the Kullback-Leibler divergence. Expanding

Dðpþ ϵkpÞ ¼ ϵ2

2pð1 − pÞ þOðϵ3Þ;

we see that if K ¼ ϵ−2−ε, where 0 < ε ≪ 1, then we can
exponentially suppress the probability that Arthur is fooled by
Merlin while keeping K ¼ polyðjηjÞ.

APPENDIX E: PERTURBATIVE GADGETS

In this Appendix we review the subject of perturbative
gadgets, which have played an important role in the reduction
of the locality of interactions in the proofs of QMA com-
pleteness and the universality of AQC. These tools are
generally useful. Our discussion is based primarily on
Jordan and Farhi (2008) [see also Bravyi, DiVencenzo,
Loss, and Terhal (2008)]. To set up the appropriate tools
we first briefly review degenerate perturbation theory.

1. Degenerate perturbation theory à la Bloch (1958)

Consider H ¼ H0 þ λV where H0 has a d-dimensional
degenerate ground subspace E0 with energy 0. Let
jψ1i;…; jψdi be the lowest d energy eigenstates of H with
energies E1;…; Ed, and let their span define the subspace E.
The goal is to define a perturbative expansion (in λ) for the
effective Hamiltonian Heff of H defined as

HeffðH; dÞ ¼
Xd
j¼1

Ejjψ jihψ jj: ðE1Þ

We show that this expansion converges provided λ satisfies

kλVk < γ=4; ðE2Þ
where γ is the gap to the first excited state ofH0. We first show
how to construct this effective Hamiltonian in terms of other,
more convenient operators.
Let P0 be the projection onto E0, and define

jαji ¼ P0jψ ji; j ¼ 1;…; d: ðE3Þ

For λ sufficiently small [this will amount to satisfying
Eq. (E2)], the states fjαjigdj¼1

are linearly independent since

the states fjψ jigdj¼1
are only slightly perturbed from the

eigenstates of H0. Note that the states fjαjigdj¼1
are not

necessarily orthogonal or normalized. There exists an operator
U such that

Ujαji ¼ jψ ji; j ¼ 1;…; d; ðE4aÞ

Ujϕi ¼ 0; ∀ jϕi ∈ E⊥
0 : ðE4bÞ

This means that

P0Ujαji ¼ P0jψ ji ¼ jαji
⇒ P2

0Ujαji ¼ P0Ujαji ¼ P0jαji
⇒ P0U ¼ P0: ðE5Þ

Let ~U be the operator satisfying

~Ujψ ji ¼ jαji; j ¼ 1;…; d; ðE6aÞ

~Ujϕi ¼ 0; ∀ jϕi ∈ E⊥: ðE6bÞ

Note that ~U is not the inverse of U because U is not invertible
on the entire Hilbert space. Also, ~U is not P0 because of
Eq. (E6b) (it annihilates all states outside of E). Note that

UP0
~Ujψ ji ¼ jψ ji: ðE7Þ

Now define

A ¼ λP0VU: ðE8Þ

Note that the states fjαiigdi¼1 are right eigenvectors of A with
eigenvalues E1;…; Ed, respectively:

Ajαji ¼ λP0Vjψ ji ¼ P0ðH0 þ λVÞjψ ji ¼ P0Ejjψ ji
¼ Ejjαji; ðE9Þ

where we used the fact that P0H0 ¼ 0 because the eigenvalue
of the ground subspace of H0 is zero. The effective
Hamiltonian associated with H can now be constructed using
U; ~U;A:

HeffðH; dÞ ¼ UA ~U: ðE10Þ

To see this note that

UA ~Ujϕi ¼ 0; ∀ jϕi ∈ E⊥; ðE11aÞ

UA ~Ujψ ji ¼ UAjαji ¼ EjUjαji ¼ Ejjψ ji; ðE11bÞ

which is identical to the action of Heff on a complete set of
vectors. The strategy is now to find a perturbative expansion
for U (we will not need the explicit expansion of ~U, so we do
not provide it here), constructA using Eq. (E8), find fjαjigdj¼1

and fEjgdj¼1
as, respectively, the right eigenvectors and

eigenvalues of A, and apply U to jαji to get a perturbative
expansion for jψ ji.
It can be shown that the desired perturbative expansion of U

and A is given by

U ¼ P0 þ
X∞
m¼1

Um; ðE12aÞ

A ¼ P0V
X∞
m¼1

Um ¼
X∞
m¼1

Am; ðE12bÞ
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where

Um ¼
X

l1≥1;l2≥0;…;lm≥0
l1þ���þlm¼m

l1þ���þlp≥p;1≤p≤m−1

ðSl1
λVÞðSl2

λVÞ � � � ðSlmλVÞP0; ðE13aÞ

Sl ¼
� 1

ð−H0Þl ð1 − P0Þ; l > 0;

−P0; l ¼ 0.
ðE13bÞ

The series in Eq. (E12) converges for kλVk < γ=4. To see this
note that

kUk ¼
				U0 þ

X∞
m¼1

Um

				 ≤ kU0k þ
X∞
m¼1

kUmk

≤ 1þ
X∞
m¼1

λm
X0kSl1

VSl2
� � � Slm

VP0k

≤ 1þ
X∞
m¼1

λm
X0kSl1

k � � � kSlm
kkVk; ðE14Þ

where the sum
P0

involves summing all the different ways to
add up to m while satisfying convexity, i.e., l1 þ l2þ
� � � þ lp ≥ p. Because of the form of Sl [Eq. (E13b)], we
have

kSlk ¼
�

1

Eð0Þ
1

�
l
¼ 1

γl
; ðE15Þ

where Eð0Þ
1 is the energy of the first excited state of H0

(corresponds to the state that minimizes H0Q0 to calculate the
operator norm). Therefore, we have

kUk ≤ 1þ
X∞
m¼1

λm
X0 kVkm

γm
: ðE16Þ

The sum
P0

is less than the number of ways to add up to m
using m non-negative integers, which is given by ð2m−1

m Þ.
However, since

P
2m−1
j¼0 ð2m−1

j Þ ¼ 22m−1, it is clear that

ð2m−1
m Þ ≤ 22m−1. Therefore, we can upper bound the sum with

this value

kUk ≤ 1þ
X∞
m¼1

22m−1 kλVkm
γm

: ðE17Þ

This series converges if the condition for λ in Eq. (E2) is
satisfied.

2. Perturbative gadgets

For a k-local target Hamiltonian HT, the goal is to construct
a 2-local “gadget” Hamiltonian HG, whose low energy
spectrum (captured by an effective Hamiltonian Heff ) approx-
imates the spectrum of HT. In order to do so, we use the
expression in Eq. (E10) for the effective Hamiltonian in terms
of the operators U and A and use their perturbative expansion
from the previous section. We show that for our gadget
Hamiltonian, the perturbative expansion of the effective
Hamiltonian matches that of the target Hamiltonian.

The perturbative gadget we review here uses a strongly
bound set of ancillas, coupled to the target qubits via weaker
interactions, where the latter are treated as a perturbation. HT

is then generated in low order perturbation theory of the
combined system consisting of both ancilla and target qubits.
Such gadgets first appeared in the proof of QMA complete-
ness of the 2-local Hamiltonian problem via a reduction from
the 3-local Hamiltonian, where they were used to construct
effective three-body interactions from two-body ones (Kempe,
Kitaev, and Regev, 2006).
Let Hs denote a k-local term. For the ith qubit in Hs, we

associate an arbitrary direction in R3 denoted by n̂s;i. A
general k-local target Hamiltonian acting on n qubits can then
be expressed as

HT ¼
Xr

s¼1

csHs; ðE18Þ

with Hs ¼ σs;1σs;2 � � � σs;k where σs;j ¼ n̂s;j · σ⃗s;j. The goal is
to simulate HT using only 2-local interactions. Toward this
end, introduce k ancilla qubits for each Hs, for a total of rk
ancilla qubits. Define

HG ¼ HA þ λV ¼
Xr

s¼1

HA
s þ λ

Xr
s¼1

Vs; ðE19aÞ

HA
s ¼

Xk
i<j

1

2
ð1 − Zs;iZs;jÞ; ðE19bÞ

Vs ¼
Xk
j¼1

cs;jσs;j ⊗ Xs;j; ðE19cÞ

cs;j ¼
�
cs j ¼ 1;

1 j ≠ 1;
ðE19dÞ

where Xs;j; Zs;j are the Pauli ðx; zÞ operators on the jth ancilla
qubit of Hs. Note that the ground state of HA

s is given by the
span of fj01 � � � 0kiAs ; j11 � � � 1kiAs g.
Consider the k-local ancilla operator Xs ≡ Xs;1 ⊗ Xs;2 ⊗

� � � ⊗ Xs;k. This operator clearly commutes with HG.
Therefore HG and the set of operators fXsgrs¼1 share a set
of eigenstates. The operator Xs has eigenvalues �1, each with
degeneracy 2k−1 (to see this simply write Xs in the basis
fj�is;1 ⊗ j�is;2 ⊗ � � � ⊗ j�is;kg). Therefore, HG can be
block diagonalized into 2r blocks, where each block corre-
sponds to a fixed Xs ¼ �1 for s ¼ 1;…; r with dimension
2n2rðk−1Þ. Let HGþ denote the block with Xs ¼ 1; ∀ s.
Note that since HGþ will be used to approximate HG, the

system will need to be initialized to have Xs ¼ 1; ∀ s. The
eigenstate of Xs with eigenvalue 1 is given by

jþis ¼
1ffiffiffi
2

p ðj01 � � � 0kis þ j11 � � � 1kisÞ; ðE20Þ

so the ancilla qubits must be initialized to be in the
state ⊗s

r¼1 jþis.
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We show that the low energy spectrum of HGþ approximates
the spectrum of HT. Our task is to calculate HeffðHGþ; 2nÞ [in
the notation of Eq. (E1)] perturbatively to kth order in λ. λV
will perturb the ground subspace of HA in two ways:

(1) It shifts the energy of the entire subspace.
(2) It splits the degeneracy of the ground subspace

beginning at kth order in perturbation theory. It is
this splitting that will allow us to mimic the spectrum
of HT.

We analyze the shift and splitting separately. To do this, define

~HeffðH; d;ΔÞ≡HeffðH; dÞ − ΔΠ; ðE21Þ

where Π is the projection onto the space spanned by
fjEjigdj¼1

. Note that the eigenstates of ~Heff and Heff are
identical, and the energy gaps between energy levels are
identical too.
Let us start with the case where r ¼ 1, i.e.,

HT ¼ σ1σ2 � � � σk, so that HA ¼ P
k
i¼1

P
k
j¼iþ1

1
2
ð1 − ZiZjÞ,

and V ¼ P
k
j¼1 σj ⊗ Xj. We first construct A [Eq. (E8)] for

HGþ. Note that HA has a ground state of zero energy
(corresponds to all qubits with Zi ¼ 1 or all qubits with
Zi ¼ −1), and the first excited state has energy γ ¼ k − 1 (let
Z1 ¼ −1, all the rest are þ1). Furthermore,

kVk ¼
				Xk

j¼1

σj ⊗ Xj

				 ≤
Xk
j¼1

kσj ⊗ Xjk ¼ k: ðE22Þ

Therefore, by Eq. (E2), the perturbative expansion will
converge if λ < ðk − 1Þ=4k. Because of the form of A
[Eq. (E12b)], all Am terms are sandwiched between P0

operators. Thus, all nonzero terms in A must take states in
E0 and return them to states in E0. Since we have restricted to
the X ¼⊗k

i¼1 Xi ¼ þ1 sector, E0 is restricted to have the
ancilla qubits in the jþi state [Eq. (E20)]. Therefore, we can
write

P0 ¼ 1 ⊗ Pþ; ðE23Þ

where Pþ is the projection onto the jþi ancilla state.
Each term in V ¼ P

k
j¼1 σj ⊗ Xj flips only a single ancilla

qubit. Therefore, in order for A take a state out of E0 and
return it, the power of V must either flip all ancilla qubits or
flip some and return them back to their original value. The
former process (flipping all qubits) first happens at kth order
in perturbation theory. The latter process (flipping and
returning) can happen at lower orders than k, but A is then
proportional to P0 since the product of V ’s effectively cancel.
To see how this works, consider A up to second order for
k > 2. From the perturbation expansion [Eq. (E12b)] we have

A≤2 ¼ λP0VP0 þ λ2P0VS1VP0; ðE24Þ

but P0VP0 ¼ 0 since Vjþi is orthogonal to jþi. On the other
hand, VP0 takes the system to a state with energy k − 1 for
HA, so S1VP0 ¼ −VP0=ðk − 1Þ. Therefore,

A≤2 ¼ −
λ2

k − 1
P0V2P0: ðE25Þ

Now note that

V2 ¼
X
i

ðσi ⊗ XiÞ2 þ
X
i≠j

ðσi ⊗ XiÞðσj ⊗ XjÞ: ðE26Þ

The cross terms are annihilated by P0 · P0 since they take the
state out of E0. The diagonal term is proportional to the
identity on the ancilla qubits, so we have

A≤2 ¼ −
λ2

k − 1
ΩP0; ðE27Þ

where Ω is an operator that depends on the particular
orientation of the σj’s. This argument extends to order k −
1 so that

A≤k−1 ¼
X
m even

λmΩmP0: ðE28Þ

At order k, something new happens. There are now cross
terms that involve all Xi’s once, i.e.,

λkP0ðσ1 ⊗ X1ÞS1ðσ2 ⊗ X2ÞS1 � � � S1ðσk ⊗ XkÞP0:

The S1 operator measures the successive change in energy of
the system to give an overall constant of

�
−

1

k − 1

��
−

1

2ðk − 2Þ
�
� � �

�
−

1

ðk − 1Þ1
�

¼
Yk−1
j¼1

�
−

1

jðk − jÞ
�

¼ ð−1Þk−1
ðk − 1Þ!2 : ðE29Þ

Therefore, the cross terms (of which there are k!, since the
operators can be multiplied in any order) then take the form

−
ð−λÞkk!
ðk − 1Þ!2 P0ðσ1 � � � σk ⊗ XÞP0: ðE30Þ

Thus,

A≤k ¼ fðλÞP0 −
kð−λÞk
ðk − 1Þ!P0ðHT ⊗ XÞP0; ðE31Þ

where fðλÞ is some kth order polynomial in λ, with coef-
ficients that depend on HT. Using the form of Heff in
Eq. (E10), we have

HeffðHG
−; 2nÞ ¼ fðλÞUP0

~U

− U
�
kð−λÞk
ðk − 1Þ!P0ðHT ⊗ XÞP0 þOðλkþ1Þ

�
~U:

ðE32Þ

Recall that UP0
~Ujψ ji ¼ jψ ji [Eq. (E7)] so UP0

~U acts as the
identity in E so that the first term in Eq. (E32) can be dropped.
Furthermore, we can replace U and ~U in the second term by
their λ0 counterpart since we are keeping terms only to order k
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and the term in the parentheses is already of order k.
Therefore,

~Heff(HGþ; 2n; fðλÞ)

¼ −
kð−λÞk
ðk − 1Þ!P0ðHT ⊗ XÞP0 þOðλkþ1Þ

¼ −
kð−λÞk
ðk − 1Þ! ðH

T ⊗ PþÞ þOðλkþ1Þ: ðE33Þ

This shows that the target Hamiltonian HT appears as the
leading order term in the effective Hamiltonian that describes
the 2n-Hilbert space of the n target qubits, albeit with a
diminished magnitude of order λk=ðk − 1Þ!.
Let us now consider the general r case, i.e., the Hamiltonian

in Eq. (E18). We note that just as in the r ¼ 1 case, HA again
has an energy gap of k − 1. Generalizing from Eq. (E22), the
perturbative expansion then converges for

λ <
k − 1

4kVk : ðE34Þ

In the sector where Xs ¼ þ1, HA has the state⊗r
s¼1 jþis as a

ground state. Since HA acts as the identity on the computa-
tional qubits, the ground state is 2n-fold degenerate.
In the perturbation expansion for A, products of V again

appear. Each Vs acts on a different ancilla register. Therefore,
at order k, cross terms of different Vs’s cannot flip all k ancilla
qubits in a register, so they are annihilated by P0 · P0. The only
cross terms that contribute are k products of a given s where
each ancilla qubit appears once. Therefore, the natural
generalization of the previous result is recovered, namely,
Eq. (E33) continues to hold with HT replaced by the sum over
r terms as in Eq. (E18), where again fðλÞ is some polynomial
in λ of order k with coefficients that depend on csHs, and
where Pþ is the projector onto ⊗s jþis.
Note that the convergence condition (E34) requires the

interaction term V to be stronger than the effective interaction
it generates, which scales as λk [as can be seen from
Eq. (E33)]. This may pose implementation difficulties, since
a practical device is likely to have only a limited range of
interaction strengths. Weaker gadgets can be implemented that
circumvent this problem, albeit at the cost of a larger overhead
of ancillary qubits (Cao and Nagaj, 2015). The idea is to
replace strong interactions by repetition of interactions with
“classical” ancillas. Additional gadget simplifications and
resource reductions were proposed by Cao et al. (2015).
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