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We introduce a general method for building neural networks on quantum computers. The quantum neural
network is a variational quantum circuit built in the continuous-variable (CV) architecture, which encodes
quantum information in continuous degrees of freedom such as the amplitudes of the electromagnetic field.
This circuit contains a layered structure of continuously parameterized gates which is universal for CV quantum
computation. Affine transformations and nonlinear activation functions, two key elements in neural networks, are
enacted in the quantum network using Gaussian and non-Gaussian gates, respectively. The non-Gaussian gates
provide both the nonlinearity and the universality of the model. Due to the structure of the CV model, the CV
quantum neural network can encode highly nonlinear transformations while remaining completely unitary. We
show how a classical network can be embedded into the quantum formalism and propose quantum versions of
various specialized models such as convolutional, recurrent, and residual networks. Finally, we present numerous
modeling experiments built with the STRAWBERRY FIELDS software library. These experiments, including a
classifier for fraud detection, a network which generates TETRIS images, and a hybrid classical-quantum
autoencoder, demonstrate the capability and adaptability of CV quantum neural networks.
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I. INTRODUCTION

After many years of scientific development, quantum com-
puters are now beginning to move out of the laboratory and
into the mainstream. Over those years of research, many
powerful algorithms and applications for quantum hardware
have been established. In particular, the potential for quan-
tum computers to enhance machine learning is truly excit-
ing [1–3]. Sufficiently powerful quantum computers can in
principle provide computational speedups for key machine
learning algorithms and subroutines such as data fitting [4],
principal component analysis [5], Bayesian inference [6,7],
Monte Carlo methods [8], support vector machines [9,10],
Boltzmann machines [11,12], and recommendation systems
[13].

On the classical computing side, there has recently been a
renaissance in machine learning techniques based on neural
networks, forming the new field of deep learning [14–16].
This breakthrough is being fueled by a number of technical
factors, including new software libraries [17–21] and power-
ful special-purpose computational hardware [22,23]. Rather
than the conventional bit registers found in digital comput-
ing, the fundamental computational units in deep learning
are continuous vectors and tensors which are transformed in
high-dimensional spaces. At the moment, these continuous
computations are still approximated using conventional digital
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computers. However, new specialized computational hard-
ware is currently being engineered which is fundamentally
analog in nature [24–31].

Quantum computation is a paradigm that furthermore in-
cludes nonclassical effects such as superposition, interference,
and entanglement, giving it potential advantages over classical
computing models. Together, these ingredients make quantum
computers an intriguing platform for exploring new types
of neural networks, in particular hybrid classical-quantum
schemes [32–39]. Yet the familiar qubit-based quantum com-
puter has the drawback that it is not wholly continuous, since
the measurement outputs of qubit-based circuits are generally
discrete. Rather, it can be thought of as a type of digital
quantum hardware [40], only partially suited to continuous-
valued problems [41,42].

The quantum computing architecture which is most nat-
urally continuous is the continuous-variable (CV) model.
Intuitively, the CV model leverages the wavelike properties of
nature. Quantum information is encoded not in qubits, but in
the quantum states of fields, such as the electromagnetic field,
making it ideally suited to photonic hardware. The standard
observables in the CV picture, e.g., position x̂ or momentum p̂,
have continuous outcomes. Importantly, qubit computations
can be embedded into the quantum field picture [43,44], so
there is no loss in computational power by taking the CV
approach. Recently, the first steps towards using the CV model
for machine learning have begun to be explored, showing
how several basic machine learning primitives can be built
in the CV setting [45,46]. As well, a kernel-based classifier
using a CV quantum circuit was trained in Ref. [10]. Beyond
these early forays, the CV model remains largely unexplored
territory as a setting for machine learning.
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In this work, we show that the CV model gives a native
architecture for building neural network models on quantum
computers. We propose a variational quantum circuit which
straightforwardly extends the notion of a fully connected layer
structure from classical neural networks to the quantum realm.
This quantum circuit contains a continuously parameterized
set of operations which are universal for CV quantum compu-
tation. By stacking multiple building blocks of this type, we
can create multilayer quantum networks which are increas-
ingly expressive. Since the network is made from a universal
set of gates, this architecture can also provide a quantum
advantage: for certain problems, a classical neural network
would require exponentially many resources to approximate
the quantum network. Furthermore, we show how to embed
classical neural networks into a CV quantum network by re-
stricting to the special case where the gates and parameters of
the network do not create any superposition or entanglement.

This paper is organized as follows. In Sec. II, we review the
key concepts from deep learning and from quantum comput-
ing which set up the remainder of the paper. We then introduce
our basic continuous-variable quantum neural network model
in Sec. III and explore it in detail theoretically. In Sec. IV,
we validate and showcase the CV quantum neural network
architecture through several machine learning modeling ex-
periments. We conclude with some final thoughts in Sec. V.

II. BACKGROUND

In this section, we give a high-level synopsis of both
deep learning and the CV model. To make this work more
accessible to practitioners from diverse backgrounds, we will
defer the more technical points to later sections. Both deep
learning and CV quantum computation are rich fields; further
details can be found in various review papers and textbooks
[14,16,40,47–49].

A. Neural networks and deep learning

The fundamental construct in deep learning is the feedfor-
ward neural network (also known as the multilayer percep-
tron) [16]. Over time, this key element has been augmented
with additional structure—such as convolutional feature maps
[50], recurrent connections [51], attention mechanisms [52],
or external memory [53]—for more specialized or advanced
use cases. Yet the basic recipe remains largely the same: a
multilayer structure, where each layer consists of a linear
transformation followed by a nonlinear “activation” function.
Mathematically, for an input vector x ∈ Rn, a single layer
L : Rn → Rm performs the transformation

L(x) = ϕ(W x + b), (1)

where W ∈ Rm×n is a matrix, b ∈ Rm is a vector, and ϕ is the
nonlinear function. The objects W and b—called the weight
matrix and the bias vector, respectively—are made up of
free parameters θW and θb. Typically, the activation function
ϕ contains no free parameters and acts elementwise on its
inputs.

The “deep” in deep learning comes from stacking multiple
layers of this type together, so that the output of one layer
is used as an input for the next. In general, each layer Li

will have its own independent weight and bias parameters.
Summarizing all model parameters by the parameter set θ, an
N-layer neural network model is given by

y = fθ (x) = LN ◦ · · · ◦ L1(x), (2)

and maps an input x to a final output y.
Building machine learning models with multilayer neural

networks is well-motivated because of various universality
theorems [54–56]. These theorems guarantee that, provided
enough free parameters, feedforward neural networks can
approximate any continuous function on a closed and bounded
subset of Rn to an arbitrary degree of accuracy. While the
original theorems showed that two layers were sufficient for
universal function approximation, deeper networks can be
more powerful and more efficient than shallower networks
with the same number of parameters [57–59].

The universality theorems prove the power of the neu-
ral network model for approximating functions, but those
theorems do not say anything about how to actually find
this approximation. Typically, the function to be fitted is not
explicitly known, but rather its input-output relation is to be
inferred from data. How can we adjust the network parameters
so that it fits the given data? For this task, the workhorse is
the stochastic gradient descent algorithm [60], which fits a
neural network model to data by estimating derivatives of the
model’s parameters—the weights and biases—and using gra-
dient descent to minimize some relevant objective function.
Combined with a sufficiently large dataset, neural networks
trained via stochastic gradient descent have shown remarkable
performance for a variety of tasks across many application
areas [14,16].

B. Quantum neural networks

While many attempts have been made over the years to
encode neural-network-like models1 into quantum systems,
none has so far claimed the term “quantum neural network”
univocally for itself. A major goal has been to “quantize”
the transformation in Eq. (2) in order to gain advantages
from quantum information processing [33,64–68]. Especially
in earlier proposals, the aim was to build a fully coherent
model in which both training and inference is implemented on
a quantum computer [69]. Recently, the term “quantum neural
network” is increasingly being used more generally to refer to
parametrized quantum and hybrid algorithms which can be
optimized or trained by a classical coprocessor [35,37,39,70].
In those models, faithfulness to the neural network structure
[Eq. (2)] is loosened, in particular to better fit the hardware
constraints of near-term devices. The name “neural networks”
highlights the fact that the circuits contain many trainable
parameters, and—in some cases—the use of repeated (i.e.,
“layered”) quantum circuit building blocks to form a larger
computation [36,71].

1We focus here on feed-forward neural networks, although Hop-
field nets [61,62] and Boltzmann machines [12,63] have also been
studied under the lens of quantum mechanics.
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While to date almost all2 quantum neural network propos-
als have used a computational model based on qubits, we pro-
pose here a natural encoding of information into continuous-
variable systems, in particular using the quantum properties
of light. The photonic approach straightforwardly matches
both notions of quantum neural networks discussed above,
i.e., it is a faithful quantization of Eq. (2), and it efficiently
uses its native hardware’s gate set without any additional
compilation or conversion. This scheme can be used to encode
classical photonic neural networks and universal quantum
computations without any changes to the hardware gate lay-
out. To interpolate between the classical and quantum realms,
we need simply to activate the phase degrees of freedom
within the circuit’s gates; this enables the network to create
superpositions and entanglement that are not present in the
classical variant.

There are several advantages to our approach. The
hardware-efficient design reduces the spatial and runtime
resources to a minimum. Constant factors are important for
classical machine learning due to scalability issues, while
low-space, low-precision, and low-power setups are in in-
creasing demand [73–75]. Furthermore, since modern com-
munication is largely optical, photonic neural networks are
uniquely suited to process directly on quantum data, such as
might be distributed over a future quantum internet. Moreover,
quantum photonic circuits provide a simple mechanism for
carrying out the nonlinear transformations that are crucial for
neural networks, while using only linear computing elements.
Though the gates of a photonic quantum computer carry out
linear transformations in an underlying Hilbert space, those
operations appear as nonlinear transformations when we use
a continuous representations of quantum states, such as the
wave function or phase space pictures. Enacting nonlinear
functions has otherwise been a dominant challenge for qubit-
based quantum neural networks [64].

Beyond these considerations, the equivalence of the algo-
rithm with physical operations gives rise to natural quantum
extensions of classical neural networks. This makes it an
excellent candidate to investigate transitions from classical
to quantum machine learning, getting us closer to unveiling
the power of quantum computing for machine learning tasks.
It also allows for a very different approach to model design:
instead of trying to artificially “quantize” a mathematical op-
eration in search for quantum advantages, we ask what models
a specific quantum hardware gives naturally rise to. The final
model of the CV quantum neural network is indeed very
different to any discrete-variable quantum model, extending
classical neural networks in significant ways, and may give
rise to very different representational capabilities.

C. The CV model

The CV formalism has a long history, and can be physi-
cally realized using optical systems [76,77], in the microwave
regime [78–80], and using ion traps [81–84]. In the CV

2To our knowledge, the only exception is Ref. [72] who propose
a quantum optics setup based on a Kerr amplifier to implement a
perceptron model into photonics.

model, information is carried in the quantum states of bosonic
modes, often called qumodes, which form the “wires” of a
quantum circuit. Continuous-variable quantum information
can be encoded using two related pictures: the wave-function
representation [85,86] and the phase space formulation of
quantum mechanics [87–90]. In the former, we specify a
single continuous variable, say x, and represent the state
of the qumode through a complex-valued function of this
variable called the wave function ψ (x), which is a vector in
the space of square-integrable functions L2(C). Concretely,
we can interpret x as a position coordinate, and |ψ (x)|2 as
the probability density of a particle being located at x. From
elementary quantum theory, we can also use a wave function
based on a conjugate momentum variable, φ(p). Instead of
position and momentum, x and p can equivalently be pictured
as the real and imaginary parts of a quantum field, such as
light.

In the phase space picture, we treat the conjugate variables
x and p on equal footing, giving a connection to classical
Hamiltonian mechanics. Thus the state of a single qumode
is encoded with two real-valued variables (x, p) ∈ R2. For N
qumodes, the phase space employs 2N real variables (x, p) ∈
R2N . Qumode states are represented as real-valued functions
F (x, p) in phase space called quasiprobability distributions.
“Quasi” refers to the fact that these functions share some,
but not all, properties with classical probability distribu-
tions. Specifically, quasiprobability functions can be negative.
While normalization forces qubit systems to have a unitary
geometry, normalization gives a much looser constraint in
the CV picture, namely that the function F (x, p) has unit
integral over the phase space. Qumode states also have a
representation as vectors or density matrices in the countably
infinite Hilbert space spanned by the Fock states {|n〉}∞n=0,
which are the eigenstates of the photon number operator
n̂ = (x̂2 + p̂2 − 1)/2, where x̂ and p̂ are the position and mo-
mentum operators, respectively.3 These basis states represent
the particlelike nature of qumode systems, with n denoting
the number of particles. This is analogous to how square-
integrable functions can be expanded using a countable basis
set like sines or cosines.

The phase space and Hilbert space formulations give equiv-
alent predictions. Thus CV quantum systems can be explored
from both a wavelike and a particlelike perspective. We will
mainly concentrate on the former.

1. Gaussian operations

There is a key distinction in the CV model between the
quantum gates which are Gaussian and those which are not. In
many ways, the Gaussian gates are the “easy” operations for a
CV quantum computer. The simplest single-mode Gaussian
gates are rotation R̂(φ), displacement D̂(α), and squeezing
Ŝ(r). The basic two-mode Gaussian gate is the (phaseless)
beamsplitter B̂S(θ ), which can be understood as a rotation

3We use the convention h̄ = 1.
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between two qumodes. More explicitly, these Gaussian gates
produce the following transformations on phase space:

R̂(φ) :

[
x

p

]
�→

[
cos φ sin φ

− sin φ cos φ

][
x

p

]
, (3)

D̂(α) :

[
x

p

]
�→

[
x + √

2Re(α)

p + √
2Im(α)

]
, (4)

Ŝ(r) :

[
x
p

]
�→

[
e−r 0
0 er

][
x
p

]
, (5)

B̂S(θ ) :

⎡⎢⎢⎢⎣
x1

x2

p1

p2

⎤⎥⎥⎥⎦ �→

⎡⎢⎢⎢⎣
cos θ −sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ −sin θ

0 0 sin θ cos θ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

p1

p2

⎤⎥⎥⎥⎦.

(6)

The ranges for the parameter values are φ, θ ∈ [0, 2π ], α ∈
C ∼= R2, and r ∈ R.

Notice that most of these Gaussian operations have names
suggestive of a linear character. Indeed, there is a natural
correspondence between Gaussian operations and affine trans-
formations on phase space. For a system of N modes, the most
general Gaussian transformation has the effect[

x
p

]
�→ M

[
x
p

]
+

[
αr

αi

]
, (7)

where M is a real-valued symplectic matrix and α ∈ CN ∼=
R2N is a complex vector with real/imaginary parts αr/αi. This
native affine structure will be our key for building quantum
neural networks.

A matrix M is symplectic if it satisfies the relation
MT �M = �, where

� =
[

0 1
−1 0

]
(8)

is the 2N × 2N symplectic form. A generic symplec-
tic matrix M can be split into a type of singular-value
decomposition—known as the Euler or Bloch-Messiah de-
composition [48,49]—of the form

M = K2

[
	 0
0 	−1

]
K1, (9)

where 	 = diag(c1, . . . , cN ) with ci > 0, and K1 and K2 are
real-valued matrices which are symplectic and orthogonal. A
matrix K with these two properties must have the form

K =
[

C D
−D C

]
, (10)

with

CDT − DCT = 0, (11)

CCT + DDT = 1. (12)

We will also need later the fact that if C is an arbitrary orthog-
onal matrix, then C ⊕ C is both orthogonal and symplectic.
Importantly, the intersection of the symplectic and orthogonal
groups on 2N dimensions is isomorphic to the unitary group

on N dimensions. This isomorphism allows us to perform
the transformations Ki via the unitary action of passive linear
optical interferometers.

Every Gaussian transformation on N modes [Eq. (7)] can
be decomposed into a CV circuit containing only the basic
gates mentioned above. Looking back to Eqs. (3)–(6), we can
recognize that interferometers made up of R and BS gates are
sufficient to generate the orthogonal transformations K1 and
K2, while S gates are sufficient to give the scaling transforma-
tion 	 ⊕ 	−1. Finally, displacement gates complete the full
affine transformation. Alternatively, we could have defined
the Gaussian transformations as those quantum circuits which
contain only the gates given above. The Gaussian transfor-
mations are so-named because they map the set of Gaussian
distributions in phase space to itself.

2. Universality in the CV model

Similar to neural networks, quantum computing comes
with its own inherent notions of “universality.” To define
universality in the CV model, we need to first introduce
operator versions of the phase space variables, namely, x̂ and
p̂. The x̂ operator has a spectrum consisting of the entire real
line:

x̂ =
∫ ∞

−∞
x|x〉〈x|dx, (13)

where the vectors |x〉 are orthogonal, 〈x|x′〉 = δ(x − x′). This
operator is not trace-class, and the vectors |x〉 are not normal-
izable. In the phase space representation, the eigenstates |x′〉
correspond to ellipses centered at x = x′ which are infinitely
squeezed, i.e., infinitesimal along the x axis and correspond-
ingly infinite in extent on the p axis. The conjugate operator p̂
has a similar structure:

p̂ =
∫ ∞

−∞
p|p〉〈p|d p, (14)

where 〈p|p′〉 = δ(p − p′) and 〈p|x〉 = e−ipx/
√

2π . Each
qumode of a CV quantum computer is associated with a pair
of operators (x̂i, p̂i ). For multiple modes, we combine the
associated operators together into vectors r̂ := (x̂, p̂).

These operators have the commutator [r̂ j, r̂k] = i� jk ,
which leads to the famous uncertainty relation for simultane-
ous measurements of x̂ and p̂. Connecting to Eq. (3), we can
associate p̂ with a rotation of the operator x̂; more concretely,
p̂ is the Fourier transform of x̂. Indeed, we can transform
between x̂ and p̂ with the special rotation gate F̂ := R̂( π

2 ).
Using a functional representation, the x̂ operator has the effect
of multiplication x̂|ψ〉 = x̂

∫
ψ (x)|x〉dx = ∫

[xψ (x)]|x〉dx. In
this same representation, p̂ is proportional to the derivative
operator, p̂|ψ〉 = ∫

[−i ∂
∂x ψ (x)]|x〉dx, as expected from the

theory of Fourier transforms.
Universality of the CV model is defined as the ability to

approximate arbitrary transformations of the form

ÛH = exp(−it Ĥ ), (15)

where the generator Ĥ = H (x̂, p̂) is a polynomial function
of (x̂, p̂) with arbitrary but fixed degree [91]. Crucially, such
transformations are unitary in the Hilbert space picture, but
can have complex nonlinear effects in the phase space picture,
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a fact that we later make use of for designing quantum neural
networks. A set of gates is universal if it can be used to build
any ÛH through a polynomial-depth quantum circuit. In fact,
a universal gate set for CV quantum computing consists of
the following ingredients: all the Gaussian transformations
from Eqs. (3)–(6), combined with any single non-Gaussian
transformation, which corresponds to a nonlinear function on
the phase space variables (x, p). This is analogous to classical
neural networks, where affine transformations combined with
a single class of nonlinearity are sufficient to universally ap-
proximate functions. Commonly encountered non-Gaussian
gates are the cubic phase gate V̂ (γ ) = exp(i γ

3 x̂3) and the Kerr
gate K̂ (κ ) = exp(iκ n̂2).

III. CONTINUOUS-VARIABLE QUANTUM
NEURAL NETWORKS

In this section, we present a scheme for quantum neural
networks using the CV framework. It is inspired from two
sides. First, from the structure of classical neural networks,
which are universal function approximators and have demon-
strated impressive performance on many practical problems.
In particular, we draw some inspiration from recent work
on photonics-based classical neural networks [31]. Second,
we leverage ideas from variational quantum circuits, which
have recently become the predominant way of thinking about
algorithms on near-term quantum devices [10,34,35,37,92–
96]. The main idea is the following: the fully connected neural
network architecture provides a powerful and intuitive ansatz
for designing variational circuits in the CV model.

We will first introduce the most general form of the quan-
tum neural network, which is the analog of a classical fully
connected network. We then show how a classical neural
network can be embedded into the quantum formalism as
a special case—where no superposition or entanglement is
created with respect to the position basis states |x〉—and
discuss the universality and computational complexity of the
fully quantum network. As modern deep learning has moved
beyond the basic feedforward architecture, considering ever
more specialized models, we will also discuss how to extend
or specialize the quantum neural network to various other
cases, specifically recurrent, convolutional, and residual net-
works. In Table I, we give a high-level matching between
neural network concepts and their CV analogs.

A. Fully connected quantum layers

A general CV quantum neural network is built up as a
sequence of layers, with each layer containing every gate from
the universal gate set. Specifically, a layer L consists of the
successive gate sequence shown in Fig. 1:

L := �̂ ◦ D̂ ◦ Û2 ◦ Ŝ ◦ Û1, (16)

where Ûi = Ûi(θi,φi ) are general N-port linear optical inter-
ferometers containing beamsplitter and rotation gates, D̂ =
⊗N

i=1D̂(αi ) and Ŝ = ⊗N
i=1Ŝ(ri ) are collective displacement and

squeezing operators (acting independently on each mode) and
�̂ = �̂(λ) is some non-Gaussian gate, e.g., a cubic phase or
Kerr gate. The collective gate variables (θ,φ, r,α,λ) form the

TABLE I. Conceptual correspondences between classical neural
networks and CV quantum computing. Some concepts from the
quantum side have no classical analog.

Classical CV quantum computing

feedforward neural network CV variational circuit
weight matrix W symplectic matrix M
bias vector b displacement vector α

affine transformations Gaussian gates
nonlinear function non-Gaussian gate
weight/bias parameters gate parameters
variable x operator x̂
derivative ∂

∂x conjugate operator p̂
no classical analog superposition
no classical analog entanglement

free parameters of the network, where λ can be optionally kept
fixed.

The sequence of Gaussian transformations D̂ ◦ Û2 ◦ Ŝ ◦
Û1 is sufficient to parametrize every possible unitary affine
transformation on N qumodes. In the Heisenberg picture or in
phase space, this corresponds to the transformation of Eq. (7).
This sequence thus has the role of a “fully connected” matrix
transformation. Interestingly, adding a nonlinearity uses the
same component that adds universality: a non-Gaussian gate
�̂. Using r̂ = (x̂, p̂) for the vector of canonical operators, we
can write the combined transformation in a form reminiscent
of Eq. (1), namely,

L(r̂) = ϕ(M r̂ + α). (17)

Thanks to the CV encoding, we get a nonlinear functional
transformation while still keeping the quantum circuit unitary.
A simple example of the nonlinear function ϕ is obtained by
setting �̂(λ) to be the single-mode cubic-phase gate V̂ (λ) =
exp (i λ

3 x̂3) which effects the following nonlinear transforma-
tion on the single mode quadratures

V̂ (λ) :

[
x̂
p̂

]
�→

[
x̂

p̂ + λx̂2

]
. (18)

Similar to the classical setup, we can stack multiple layers
of this type end-to-end to form a deeper network (Fig. 2).
The quantum state output from one layer is used as the
input for the next. Different layers can be made to have

FIG. 1. The circuit structure for a single layer of a CV quantum
neural network: an interferometer, local squeeze gates, a second
interferometer, local displacements, and finally local non-Gaussian
gates. The first four components carry out an affine transformation,
followed by a final nonlinear transformation.
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FIG. 2. An example multilayer continuous-variable quantum
neural network. In this example, the later layers are progressively
decreased in size. Qumodes can be removed either by explicitly
measuring them or by tracing them out. The network input can
be classical, e.g., by displacing each qumode according to data, or
quantum. The network output is retrieved via measurements on the
final qumode(s).

different widths by adding or removing qumodes between
layers. Removal can be accomplished by measuring or tracing
out the extra qumodes. In fact, conditioning on measurements
of the removed qumodes is another method for performing
non-Gaussian transformations [76]. This architecture can also
accept classical inputs. We can do this by fixing some of the
gate arguments to be set by classical data rather than free
parameters, for example by applying a displacement D̂(x) to
the vacuum state to prepare the state D̂(x)|0〉. This scheme
can be thought of as an embedding of classical data into a
quantum feature space [10]. The output of the network can
be obtained by performing measurements and/or computing
expectation values. The choice of measurement operators is
flexible; different choices (homodyne, heterodyne, photon-
counting, etc.) may be better suited for different situations.
As is convention for variational circuit models, a final cost
function is built using the expectation values from these
measurements.

It is important to emphasize that, unlike many previous ap-
proaches using discrete variables, the CV formalism allows us
to enact nonlinear transformations between functions, similar
to classical neural networks, using purely linear operations,
i.e., the unitary gates in a quantum circuit. This duality is
due to the fact that the native domain of the CV model is
the vector space L2(C). Vectors in this space correspond to
square-integrable functions, and thus linear transformations
on this space will take a function f to another function g, even
if the functional relation between these vectors is nonlinear
from the perspective of classical neural networks, i.e., f (x) =
ϕ(W g(x) + b).

In the following sections, we will explore different aspects
of the CV quantum neural network architecture introduced in
this section. Note that most of the discussion so far has been
presented using either the Heisenberg picture or the phase-
space representation. As is usual with quantum mechanics,
though one particular representation may be more convenient
to explain or understand certain features, no representation
is fundamental. In the next sections, we sometimes examine
our model using different representations, e.g., by looking
at states in a given orthonormal basis, such as the Fock or
quadrature basis. Using a different representation, of course,

does not change the underlying model we are studying, just
the way in which we look at it and understand its features.

B. Embedding classical neural networks

The above scheme for a CV quantum neural network
is quite flexible and general. In fact, it includes classical
neural networks as a special case, where we don’t create
any superposition or entanglement in the position basis. We
now present a mathematical recipe for embedding a classical
neural network into the quantum CV formalism. We note
that this embedding is distinct from previous photonics-based
proposals for classical neural networks [31], in particular with
the use of the position eigenstates, squeezing, and quantum
optical nonlinearities. We give the recipe for a single feed-
forward layer; multilayer networks follow straightforwardly.
Throughout this part, we will represent N-dimensional real-
valued vectors x using N-mode quantum optical states built
from the eigenstates |xi〉 of the operators x̂i:

x ↔ |x〉 := |x1〉 ⊗ · · · ⊗ |xN 〉. (19)

For the first layer in a network, we create the input x by
applying the displacement operator D̂(x) to the state |x = 0〉.
Subsequent layers will use the output of the previous layer
as input. To read out the output from the final layer, we can
use ideal homodyne detection in each qumode, which projects
onto the states |xi〉 [49].

We would like to enact a fully connected layer [Eq. (1)]
completely within this encoding, i.e.,

|x〉 �→ |ϕ(W x + b)〉. (20)

This transformation will take place entirely within the x
coordinates; we will not use the momentum variables. We thus
want to restrict our quantum network to never mix between x̂
and p̂. To proceed, we will break the overall computation into
separate pieces. Specifically, we split up the weight matrix
using a singular value decomposition, W = O2	O1, where
the Ok are orthogonal matrices and 	 is a positive diagonal
matrix. For simplicity, we assume that W is full rank. Rank-
deficient matrices form a measure-zero subset in the space of
weight matrices, which we can approximate arbitrarily closely
with full-rank matrices.

Multiplication by an orthogonal matrix. The first step in
Eq. (16) is to apply an interferometer Û1, which corresponds
to the rightmost orthogonal matrix K1 in Eq. (9). In order
not to mix x̂ and p̂, we must restrict to block-diagonal K1.
With respect to Eqs. (10)–(12), this means that C is an
orthogonal matrix and D = 0. This choice corresponds to an
interferometer which only contains phaseless beamsplitters.
With this restriction, we have

Û1|x〉 = Û1

[
N⊗

i=1

|xi〉
]

=
N⊗

i=1

∣∣∣∣∣∣
N∑

j=1

Ci jx j

〉

= |Cx〉. (21)

The full derivation of this expression can be found in Ap-
pendix A. Thus the phaseless linear interferometer Û1 is
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equivalent to multiplying the encoded data by an orthogonal
matrix C. To connect to the weight matrix W = O1	O2, we
choose the interferometer which has C = O1. A similar result
holds for the other interferometer Û2.

Multiplication by a diagonal matrix. For our next element,
consider the squeezing gate. The effect of squeezing on the x̂i

eigenstates is [97]

Ŝ(ri )|xi〉 = √
ci|cixi〉, (22)

where ci = e−ri . An arbitrary positive scaling ci can thus be
achieved by taking ri = ln(ci ). Note that squeezing leads to
compression (positive ri, ci � 1), while antisqueezing gives
expansion (negative ri, ci � 1), matching with Eq. (5). A col-
lection of local squeezing transformations thus corresponds to
an elementwise scaling of the encoded vector,

Ŝ (r)|x〉 = e− 1
2

∑
i ri |	x〉, (23)

where 	 := diag({ci}) > 0. We note that since the |xi〉 eigen-
states are not normalizable, the prefactor has limited formal
consequence.

Addition of bias. Finally, it is well-known that the displace-
ment operator acting locally on quadrature eigenstates has the
effect

D̂(αi )|xi〉 = |xi +
√

2αi〉, (24)

for αi ∈ R, which collectively gives

D̂(α)|x〉 = |x +
√

2α〉. (25)

Thus, to achieve a bias translation of d, we can simply
displace by α = 1√

2
d.

Affine transformation. Putting these ingredients together,
we have

D̂ ◦ Û2 ◦ Ŝ ◦ Û1|x〉 ∝ |O2	O1x + d〉
= |W x + d〉, (26)

where we have omitted the parameters for clarity. Hence,
using only Gaussian operations which do not mix x and p,
we can effectively perform arbitrary full-rank affine transfor-
mations amongst the vectors |x〉.

Nonlinear function. To complete the picture, we need to
find a non-Gaussian transformation �̂ which has the following
effect:

�̂|x〉 = |ϕ(x)〉, (27)

where ϕ : R → R is some nonlinear function. We will restrict
to an elementwise function, i.e., �̂ acts locally on each mode,
similar to the activation function of a classical neural network.
For simplicity, we will consider ϕ to be a polynomial of
fixed degree. By allowing the degree of ϕ to be arbitrarily
high, we can approximate any function which has convergent
Taylor series. The most general form of a quantum channel
consists of appending an ancilla system, performing a unitary
transformation on the combined system, and tracing out the
ancilla. For qumode i, we will append an ancilla i′ in the x = 0
eigenstate, i.e.,

|x〉i �→ |x〉i|0〉i′ , (28)

where, for clarity, we have made the temporary notational
change |xi〉 ↔ |x〉i.

Consider now the unitary V̂ϕ := exp ( i√
2
ϕ(x̂i ) ⊗ p̂i′ ),

where ϕ(x̂i ) is understood as a Taylor series using powers of
x̂i. Applying this to the above two-mode system, we get

exp

(
− i√

2
ϕ(x̂i ) ⊗ p̂i′

)
|x〉i|0〉i′ = exp

(
− i√

2
ϕ(xi ) p̂i′

)
|x〉i|0〉i′

= D̂i′ (ϕ(xi ))|x〉i|0〉i′

= |x〉i|ϕ(x)〉i′ , (29)

where we have recognized that p̂ is the generator of dis-
placements in x. We can now swap modes i and i′ (using
a perfectly reflective beamsplitter) and trace out the ancilla.
The combined action of these operations leads to the overall
transformation

|xi〉 �→ |ϕ(xi )〉. (30)

Alternatively, we are free to keep the system in the form
|xi〉|ϕ(xi )〉; this can be useful for creating residual quantum
neural networks.

Together, the above sequence of Gaussian operations,
followed by a non-Gaussian operation, lead to the desired
transformation |x〉 �→ |ϕ(W x + b)〉, which is the same as a
single-layer classical neural network. In this section, the states
|x〉 were used in order to provide a convenient mathematical
embedding; in a practical CV device, we would need to
approximate the states |x〉 via finitely squeezed states. Finally,
we remark that this particular classical neural network embed-
ding strategy cannot be immediately extended to a coherent
version [i.e.,

∫
dxψ (x)|x〉 �→ ∫

dxψ (x)|ϕ(W x + b)〉], since
the nonlinearity we employed, which requires an ancilla, is
not unitary. In fact, when implementing a CV neural network
on real physical systems, it might be preferred to use more
primitive (unitary) quantum nonlinearities, such as the cubic
phase gate or the Kerr gate, rather than trying to directly
mimic some particular classical activation function ϕ.

In summary, we have shown that the CV neural network
model can duplicate all structure of a classical neural network
when we use it in a particular way; specifically, a way that
encodes all information into a single basis, does not leverage
quantum phases, does not create superpositions, and does not
generate entanglement. In practice, the general quantum neu-
ral network framework does not require any particular choice
of basis or encoding. Because of this additional flexibility, the
full quantum network has larger representational capacity than
a conventional neural network, allows for quantum correla-
tions like entanglement, and cannot be efficiently simulated
by classical models, as we will discuss in Sec. III D.

C. Beyond the fully connected architecture

Modern deep learning techniques have expanded beyond
the basic fully connected architecture. Powerful deep learning
software packages [17–21] have allowed researchers to ex-
plore more specialized networks or complicated architectures.
For the quantum case, we should also not feel restricted to
the basic network structure presented above. Indeed, the CV
model gives us flexibility to encode problems in a variety
of representations. For example, we can use the phase space
picture, the wave-function picture, the Hilbert space picture,
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FIG. 3. Quantum adaptations of the convolutional layer, recurrent layer, and residual layer. The convolutional layer is enacted using a
Gaussian unitary with translationally invariant Hamiltonian, resulting in a corresponding symplectic matrix that has a block Toeplitz structure.
The recurrent layer combines an internal signal from previous layers with an external source, while the residual layer combines its input and
output signals using a controlled-X gate.

or some hybrid of these. We can also encode information in
coherent states, squeezed states, Fock states, or superpositions
of these states. Furthermore, by choosing the gates and pa-
rameters to have particular structure, we can specialize our
network ansatz to more closely match a particular class of
problems. This can often lead to more efficient use of param-
eters and better overall models. In the rest of this section, we
will highlight potential quantum versions of various special
neural network architectures; see Fig. 3 for a visualization.

Convolutional network. A common architecture in classical
neural networks is the convolutional network, or convnet [50].
Convnets are particularly well-suited for computer vision and
image recognition problems because they reflect a simple yet
powerful observation: since the task of detecting an object
is largely independent of where the object appears in an
image, the network should be equivariant to translations [16].
Consequently, the linear transformation W in a convnet is
not fully connected; rather, it is a specialized sparse lin-
ear transformation, namely, a convolution. In particular, for
one-dimensional convolutions, the matrix W has a Toeplitz
structure, with entries repeated along each diagonal. This is
similar to the well-known principle in physics that symmetries
in a physical system can lead to simplifications of our physical
model for that system (e.g., Bloch’s theorem [98] or Noether’s
theorem [99]).

We can directly enforce translation symmetry on a quan-
tum neural network model by making each layer in the
quantum circuit translationally invariant. Concretely, con-
sider the generator Ĥ = Ĥ (x̂, p̂) of a Gaussian unitary, Û =
exp(−it Ĥ ). Suppose that this generator is translationally
invariant, i.e., Ĥ does not change if we map (x̂i, p̂i ) to
(x̂i+1, p̂i+1). Then the symplectic matrix M that results from
this Gaussian unitary will have the form

M =
[

Mxx Mxp
Mpx Mpp

]
, (31)

where each Muv is itself a Toeplitz matrix, i.e., a one-
dimensional convolution (see Appendix B). The matrix M
can be seen as a special kind of convolution that respects
the uncertainty principle: performing a convolution on the
x coordinates naturally leads to a conjugate convolution in-
volving p. The connection between translationally invariant
Hamiltonians and convolutional networks was also noted in
Ref. [59].

Recurrent network. This is a special-purpose neural net-
work which is used widely for problems involving sequences
[100], e.g., time series or natural language. A recurrent net-
work can be pictured as a model which takes two inputs for

every time step t . One of these inputs, x(t ), is external, coming
from a data source or another model. The other input is an
internal state h(t ), which comes from the same network, but at
a previous time step (hence the name recurrent). These inputs
are processed through a neural network fθ (x(t ), h(t ) ), and an
output y(t ) is (optionally) returned. Similar to a convolu-
tional network, the recurrent architecture encodes translation
symmetry into the weights of the model. However, instead
of spatial translation symmetry, recurrent models have time
translation symmetry. In terms of the network architecture,
this means that the model reuses the same weights matrix
W and bias vector b in every layer. In general, W or b are
unrestricted, though more specialized architectures could also
further restrict these.

This architecture generalizes straightforwardly to quantum
neural networks, with the inputs, outputs, and internal states
employing any of the data-encoding schemes discussed ear-
lier. It is particularly well-suited to an optical implementation,
since we can connect the output modes of a quantum circuit
back to the input using optical fibres. This allows the same
quantum optical circuit to be reused several times for the same
model. We can reserve a subset of the modes for the data input
and output channels, with the remainder used to carry forward
the internal state of the network between time steps.

Residual network. The residual network [101], or resnet, is
a more recent innovation than the convolutional and recurrent
networks. While these other models are special cases of
feedforward networks, the resnet uses a modified network
topology. Specifically, “shortcut connections,” which perform
a simple identity transformation, are introduced between lay-
ers. Using these shortcuts, the output of a layer can be added to
its input. If a layer by itself would perform the transformation
F , then the corresponding residual network performs the
transformation

x �→ x + F (x). (32)

To perform residual-type computation in a quantum neural
network, we look back to Eq. (29), where a two-mode unitary
was given which carries out the transformation

|x〉|0〉 �→ |x〉|ϕ(x)〉, (33)

where ϕ is some desired non-Gaussian function. To complete
the residual computation, we need to sum these two values
together. This can be accomplished using the controlled-X (or
SUM) gate ĈX [43], which can be carried out with purely
Gaussian operations, namely, squeezing and beamsplitters
[102]. Adding a ĈX gate after the transformation in Eq. (33),
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we obtain

|x〉|0〉 �→ |x〉|x + ϕ(x)〉, (34)

which is a residual transformation. This residual transforma-
tion can also be carried out on arbitrary wave functions ψ (x)
in superposition over position eigenstates, giving the general
mapping ∫

ψ (x)|x〉dx �→
∫

ψ (x)|x〉|x + ϕ(x)〉dx. (35)

D. The advantages of CV quantum neural networks

In this section, we identify concrete properties of CV
quantum neural networks that differentiate them from their
classical counterparts and discuss how these properties could
potentially improve performance in machine learning. Specif-
ically, these are the following. (1) CV quantum neural net-
works can create superpositions and entanglement by allow-
ing us to mix both the x and p representations, which are
Fourier transforms of each other. (2) CV quantum neural
networks are universal for photonic quantum computing: they
can in principle be configured to perform any CV quantum
algorithm, including those with known hardness results. (3)
CV quantum neural networks are able to perform nonlinear
transformations on probability distributions by making use of
quantum interference effects.

Superposition and entanglement. When embedding clas-
sical neural networks, restrictions were imposed on the ele-
mentary gates constituting the quantum neural network: dis-
placement and squeezing parameters were assumed to be real,
interferometers contained only phaseless beamsplitters, and
non-Gaussian transformations mapped position eigenstates
to position eigenstates. A distinguishing feature of quantum
physics is the possibility to operate not only on some fixed
basis states, e.g., the states |x〉, but also on superpositions
of those basis states |ψ〉 = ∫

ψ (x)|x〉dx, where ψ (x) is a
multimode wave function. Additionally, it is possible to apply
gates that generate superpositions and entanglement, as well
as to perform measurements in different bases. By relaxing
the restrictions used in the classical embedding, it is possible
to unlock the full capabilities of CV quantum neural networks.

For example, by allowing phases in the interferometers,
single-mode Fourier gates F̂ = eiπ (x̂2+p̂2 )/4 can be applied. A
multimode Fourier transform F̂⊗N can generate superposi-
tions in the position basis starting from eigenstates, F̂⊗N |x〉 =

1
(
√

2π )N

∫
eix·x′ |x′〉dx′, and natively map input wave functions

ψ (x) to their Fourier transforms ψ̃ (x):

F̂⊗N
∫

ψ (x)|x〉dx = 1

(
√

2π )N

∫∫
ψ (x)eix·x′ |x′〉dxdx′

=
∫

ψ̃ (x′)|x′〉dx′. (36)

A nonsuperposition state in the position basis (e.g., |x〉) can
become highly superposed after applying a Fourier transform
F̂⊗N . By leveraging superposition, CV quantum neural net-
works can work in the position or momentum representations
(alternatively, time or frequency domains) with equal ease.

As a second example, by allowing phases in the interferom-
eters, entanglement will always be generated by the CV neural

network, as long as the inputs are not all coherent states.
This is a corollary of the result in Ref. [103]: “Given a non-
classical pure-product-state input to an N-port linear-optical
network, the output is almost always mode entangled; the only
exception is a product of squeezed states, all with the same
squeezing strength, input to a network that does not mix the
squeezed and antisqueezed quadratures.” Nonclassical in their
notation means precisely coherent states; for quadratures to
not be mixed it has to be the case that the beamsplitters in the
interferometers are phaseless, which was the case considered
before when embedding classical neural networks.

Universality and hardness. In general, CV quantum neural
networks are capable of leveraging the full power of universal
quantum computation. Indeed, the quantum gates in a single
layer form a universal gate set, and therefore a CV quantum
neural network with sufficient layers can carry out any algo-
rithm implementable on a universal CV quantum computer.
In this sense, quantum neural networks are not only appealing
because of their potential applications to machine learning
and artificial intelligence: they are also a new framework for
quantum computing that can enable the discovery of new
quantum algorithms [71,93,104,105].

We will now overview how specific models of photonic
quantum computing can be realized using CV quantum neural
networks. First, Gaussian boson sampling (GBS) [106] is a
model of photonic quantum computing where a multimode
Gaussian state is prepared and subsequently measured in the
photon-number basis, a procedure which is believed to be
hard to simulate classically. GBS includes conventional Boson
Sampling as a special case [107,108]. Any GBS configuration
can be encoded in a CV quantum neural network by (i) turning
off the non-Gaussian gates and (ii) measuring the outputs
using photon detectors.

Additionally, CV quantum neural networks can be used to
reproduce continuous-variable instantaneous quantum poly-
nomial (CV-IQP) circuits [109], which consist of (i) input
momentum eigenstates, (ii) a unitary transformation that is
diagonal in the position basis, and (iii) momentum homodyne
measurements. To realize CV-IQP circuits with quantum neu-
ral networks, it suffices to use Gaussian and non-Gaussian
gates that are diagonal in the position basis. Stacked together,
these gates allow the implementation of arbitrary unitaries
that are diagonal in the position basis. Together with Fourier
transform gates to create the input states and perform the final
measurements, this leads to the implementation of general
CV-IQP circuits. Both GBS [106,110] and CV-IQP circuits
[109,111] have been shown to be intractable to simulate
classically.

These first points establish that CV quantum neural net-
works can behave differently than their classical counterparts.
On the one hand, this motivates the use of CV quantum
neural networks for quantum machine learning tasks, such as
developing quantum algorithms or for learning with quantum
data like in quantum chemistry [112]. On the other hand,
the additional computational power of quantum computing
suggests potential for improvements to machine learning with
classical data. Our next point helps to make concrete the
improvements that are possible.

Nonlinear transformations of probability distributions.
Transforming between probability distributions is an
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(a)

(c)

(b)

(d)

FIG. 4. Machine learning problems and architectures explored in this work: (a) curve fitting of functions f (x) is achieved through a
multilayer network, with x encoded through a position displacement on the vacuum and f (x) through a position homodyne measurement at
output; (b) credit card fraud detection using a hybrid classical-quantum classifier, with the classical network controlling the parameters of an
input layer; (c) image generation of the TETRIS dataset from input displacements to the vacuum, with output image encoded in photon number
measurements at the output mode; and (d) hybrid classical-quantum autoencoder for finding a continuous phase-space encoding for the first
three Fock states.

important capability for generative machine learning,
e.g., in the popular “normalizing flows” technique [113].
Functionality for manipulating distributions is already
built into widely-used machine learning software such as
TENSORFLOW [114]. The approach is to begin with a simple
prior distribution p(x), such as a Gaussian, which is easily
sampled from. The sampled value x is then subject to a
series of invertible transformations, parameterized via neural
networks, leading to a final value y = f (x). This value is
then a sample from the transformed probability distribution

p̃(y) = p(x)| det ∂ f
∂x |−1

. This approach, common in generative
neural networks, provides the ability to sample from a rich
class of posterior distributions. However, this approach
is still limited by the constraints of classical computing.
For example, while the function f may be nonlinear with
respect to the input x, it is easily verified that the mapping is
always a linear transformation with respect to the probability
distribution p(x) [115].

Given the results of Sec. III B, such transformations can
also be performed using a CV quantum neural network. Yet
the quantum model can carry out a richer class of transfor-
mations amongst probability distributions—including nonlin-
ear transformations—since quantum mechanics works on the
level of probability amplitudes. For example, for a given sin-
gle mode state |ψ〉 = ∫

ψ (x)|x〉 dx, consider the probability
distribution p(x) = |ψ (x)|2 over measurements of the variable
x. This probability distribution can be (invertibly) transformed
by passing through one or more layers of a CV quantum neural
network. If W is the unitary transformation corresponding to
the network, the output state |ψ̃〉 will have a transformed wave
function

ψ̃ (x) =
∫

W (x, x′)ψ (x′)dx′ (37)

and probability distribution p̃(x) = |ψ̃ (x)|2. Note that the
output probability distribution is not related in a simple man-
ner to the input probability distribution. Only the underlying
probability amplitudes are connected via an integral transform
with the complex kernel W (x, x′).

As we have already discussed, the CV quantum neu-
ral network is a model of universal quantum computing,
which allows for arbitrary transformations W between square-
integrable wave functions, and by extension a richer class
transformations between probability distributions p(x) and
p̃(x) than is possible via classical models. This capacity to
carry out more complex manipulations of probability distribu-
tions by leveraging quantum interference effects suggests that
CV quantum neural networks can enhance generative machine
learning techniques.

IV. NUMERICAL EXPERIMENTS

We study several tasks in both supervised and unsuper-
vised settings, with varying degrees of hybridization between
quantum and classical neural networks. Some cases employ
both classical and quantum networks whereas others are fully
quantum. The architectures used are illustrated in Fig. 4.
Unless otherwise stated, we employ the Adam optimizer [116]
to train the networks and we choose the Kerr gate K̂ (κ ) =
exp(iκ n̂2) as the non-Gaussian gate in the quantum networks.
Supplemental discussions, including a comparison of different
optimization methods and regularization strategies, can be
found in Appendix C. Our results highlight the wide range
of potential applications of CV quantum neural networks,
which will be further enhanced when deployed on dedicated
hardware which exceeds the current limitations imposed by
classical simulations.
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A. Training quantum neural networks

We distinguish two regimes for the training of quantum
neural networks. If they consist of a sufficiently small num-
ber of qumodes such that they can be simulated classically
without prohibitive overheads, training can be in principle
performed as with any classical model, namely, defining a
cost function that depends on the output state of the circuit
and optimizing the circuit parameters with respect to this cost
function. This regime is particularly relevant in cases where
the goal is to find configurations of small quantum circuits
to perform specific tasks, for instance preparing complex
quantum states [105].

Since quantum computations are hard to efficiently simu-
late, the simulator-based approach cannot be used for quantum
neural networks larger than a few qumodes, and an alternative
strategy is required for scalable hardware-based training. One
approach is to treat the network as a black box, controlled by a
set of gate parameters (θ,φ, r,α,λ), which is used to compute
expectation values. Training could then be performed using
numerical techniques, such as the finite-difference method or
Nelder-Mead, to optimize the cost function under this black-
box approach.

In this work, the networks are simulated using the STRAW-
BERRY FIELDS software platform [117] and the QUANTUM

MACHINE LEARNING TOOLBOX app which is built on top of
it. We use both automatic differentiation with respect to the
quantum gate parameters—which is built into STRAWBERRY

FIELDS’ TENSORFLOW [20] quantum circuit simulator—as well
as numerical optimization algorithms to train these networks.
More concretely, STRAWBERRY FIELDS can express the output
state of a quantum neural network as a TENSORFLOW Tensor
object. TENSORFLOW’s built-in tools then allow use of estab-
lished optimization algorithms, based on stochastic gradient
descent, for optimization of arbitrary cost functions which
depend on the output state.

A more advanced training strategy could make use
of circuit learning techniques [36] to implement new
“quantum-aware” variants of the backpropagation algorithm.
This method does not require the use of a simulator; instead,
gradients of the cost function can be calculated using the same
quantum neural network hardware that is being trained [118].
The main idea is to analytically differentiate the equation
describing a circuit, e.g., Eq. (16), and rewrite the result as
a difference of two circuits. This provides a “parameter shift
rule” for how to obtain a gradient using the same hardware,
but with different settings. This method can be combined
seamlessly with conventional backpropagation algorithms, al-
lowing hybrid computational models to be trained end-to-end
[119]. In cases where an analytic gradient rule is not yet
known, the finite difference method can be used as a fallback.
This approach is efficient in the sense that the number of
network parameters grows polynomially with the depth and
width of the network.

In several of the examples we study in the following
sections, cost functions are expressed in terms of a fidelity
with respect to a target pure state. If the output state of the
network is ρ̂ and the target state is |ϕ〉, the fidelity can be
expressed as the expectation value Tr(ρ̂|ϕ〉〈ϕ|) and the afore-
mentioned training methods can be applied. For experimental

implementation, it suffices to decompose the projector |ϕ〉〈ϕ|
in terms of an experimentally-accessible basis of operators.
These expectation values cannot be calculated exactly; rather,
repeated measurements must be performed to estimate them
with sufficient precision. Once gradients have been estimated
in this manner, we can again employ established optimization
algorithms based on stochastic gradient descent.

B. Curve fitting

A prototypical problem in machine learning is curve fitting:
learning a given relationship between inputs and outputs. We
will use this simple setting to analyze the behavior of CV
quantum neural networks with respect to different choices
for the model architecture, cost function, and optimization
algorithm. We consider the simple case of training a quantum
neural network to reproduce the action of a function f (x) on
one-dimensional inputs x, when given a training set of noisy
data. This is summarized in Fig. 4(a). We encode the classical
inputs as position-displaced vacuum states D̂(x)|0〉, where
D̂(x) is the displacement operator and |0〉 is the single-mode
vacuum. Let |ψx〉 be the output state of the circuit given input
D̂(x)|0〉. The goal is to train the network to produce output
states whose expectation value for the quadrature operator x̂
is equal to f (x), i.e., to satisfy the relation 〈ψx|x̂|ψx〉 = f (x)
for all x.

To train the circuits, we use a supervised learning setting
where the training and test data are tuples (xi, f (xi )) for values
of xi chosen uniformly at random in some interval. We define
the loss function as the mean square error (MSE) between the
circuit outputs and the desired function values

L = 1

N

N∑
i=1

[
f (xi ) − 〈

ψxi

∣∣ŷ∣∣ψxi

〉]2
. (38)

To test this approach in the presence of noise in the data,
we consider functions of the form f̃ (x) = f (x) + � f where
� f is drawn from a normal distribution with zero mean and
standard deviation ε. The results of curve fitting on three noisy
functions are illustrated in Fig. 5.

Avoiding overfitting. Ideally, the circuits will produce out-
puts that are smooth and do not overfit the noise in the
data. CV quantum neural networks are inherently adept at
achieving smoothness because quantum states that are close
to each other cannot differ significantly in their expectation
value with respect to observables. Quantitatively, Hölder’s
inequality states that for any two states ρ̂ and σ̂ it holds that

|Tr[(ρ̂ − σ̂ )X̂ ]| � ‖ρ̂ − σ̂‖1‖X̂‖∞ (39)

for any operator X . This smoothness property of quantum neu-
ral networks is clearly seen in Fig. 5, where the input/output
relationship of quantum circuits gives rise to smooth functions
that are largely immune to the presence of noise, while still
being able to generalize from training to test data. We found
that no regularization mechanism was needed to prevent over-
fitting of the problems explored here. Of course, the output
of the function is an expectation, which can be calculated
exactly when the circuits can be simulated, but only estimated
to finite precision in an experimental setting. The error in
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FIG. 5. Numerical experiment A. Curve fitting with continuous-variable quantum neural networks. The networks consist of a single mode
and six layers, and was trained for 2000 steps with a Hilbert-space cutoff dimension of 10. As examples, we consider noisy versions of the
functions sin(πx), x3, and sinc(πx), displayed respectively from left to right. We set a standard deviation of ε = 0.1 for the noise. The training
data are shown as red circles. The output expectation values of the quantum neural network for the test inputs are shown as blue crosses.
The outputs of the circuit very closely resemble the noiseless ground truth curves, shown in green. The scale is set such that h̄ = 1. In our
simulated experiments, the expectation values are calculated numerically. In a real-world experiment, expectation values can be determined
using empirical averages, and the precision of the estimate can be increased by repeated experiments.

the estimation can be lowered by increasing the number of
measurements.

Improvement with depth. The circuit architecture is defined
by the number of layers, i.e., the circuit depth. Figure 6 (top)
studies the effect of the number of layers on the final value
of the MSE. A clear improvement for the curve fitting task is
seen for up to six layers, at which point the improvements
saturate. The MSE approaches the square of the standard
deviation of the noise, ε2 = 0.01, as expected when the circuit
is in fact reproducing the input-output relationship of the
noiseless curve.

Quantum device imperfections. We also study the effect
of imperfections in the circuit, which for photonic quantum
computers is dominated by photon loss. We model this using
a lossy bosonic channel, with a loss parameter η. Here η = 0%
stands for perfect transmission (no photon loss). The lossy
channel acts at the end of each individual layer, ensuring
that the effect of photon loss increases with circuit depth.
For example, a circuit with six layers and loss coefficient
η = 10% experiences a total loss of 46.9%. The effect of loss
is illustrated in Fig. 6 (bottom) where we plot the MSE as a
function of η. The quality of the fit exhibits resilience to this
imperfection, indicating that the circuit learns to compensate
for the effect of losses.

C. Supervised learning with hybrid networks

Classification of data is a canonical problem in machine
learning. We construct a hybrid classical-quantum neural
network as a classifier to detect fraudulent transactions in
credit card purchases. In this hybrid approach, a classical
neural network is used to control the gate parameters of the
quantum network, the output of which determines whether
the transactions are classified as genuine or fraudulent. This
is illustrated in Fig. 4(b).

Data preparation. For the experiment, data were taken
from a publicly available database of labeled historical credit
card transactions which are flagged as either fraudulent or
genuine [120]. The data are composed of 28 features de-
rived through a principal component analysis of the raw
data, providing an anonymization of the transactions. Of the

284,807 provided transactions, only 0.172% are fraudulent.
We create training and test datasets by splitting the fraudulent
transactions in two and combining each subset with genuine

FIG. 6. MSE as a function of the number of layers and as a
function of photon loss. The plots correspond to the task of fitting
the function sin(πx) in the interval x ∈ [−1, 1]. (Top) Increasing the
number of layers is helpful until a saturation point is reached with
six layers, after which little improvement is observed. (Bottom) The
networks can be resilient to imperfections, as seen by the fact that
only a slight deviation in the mean square error appears for losses of
10% in each layer. The fits with a photon loss coefficient of 10% and
30% are shown in the inset.
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FIG. 7. Numerical experiment B. (Left) Confusion matrix for the test dataset with a threshold probability of pth = 0.9. (Right) Receiver
operating characteristic (ROC) curve for the test dataset, showing the true negative rate against the false negative rate as a parametric plot of
the threshold probability. Here, the ideal point is given by the circle in the top-left corner, while the triangle denotes the closest point to optimal
among chosen thresholds. This point corresponds to the confusion matrix given here, with threshold pth = 0.9.

transactions. For the training dataset, we undersample the
genuine transactions by randomly selecting them so that they
outnumber the fraudulent transactions by a ratio of 3 : 1. This
undersampling is used to address the notable asymmetry in the
number of fraudulent and genuine transactions in the original
dataset. The test dataset is then completed by adding all the
remaining genuine transactions.

Hybrid network architecture. The first section of the net-
work is composed of a series of classical fully connected
feedforward layers. Here, an input layer accepts the first
10 features. This is followed by two hidden layers of the
same size and the result is output on a layer of size 14. An
exponential linear unit (ELU) was used as the nonlinearity.
The second section of our architecture is a quantum neural
network consisting of two modes initially in the vacuum. An
input layer first operates on the two modes. The input layer
omits the first interferometer as this has no effect on the
vacuum qumodes. This results in the layer being described
by 14 free parameters, which are set to be directly controlled
by the output layer of the classical neural network. The input
layer then feeds onto four hidden layers with fully controllable
parameters, followed by an output layer in the form of a
photon number measurement. An output encoding is fixed
in the Fock basis by post-selecting on single-photon outputs
and associating a photon in the first mode with a genuine
transaction and a photon in the second mode with a fraudulent
transaction.

Training. To train the hybrid network, we perform stochas-
tic gradient descent (SGD) with a batch size of 24. Let p be
the probability that a single photon is observed in the mode
corresponding to the correct label for the input transaction.
The cost function to minimize is

C =
∑

i∈data

(1 − pi )
2, (40)

where pi is the probability of the single photon being detected
in the correct mode on input i. The probability included in
the cost function is not post-selected on single photon outputs,
meaning that training learns to output a useful classification as

often as possible. We perform training with a cutoff dimension
of 10 in each mode for 3 × 104 batches. Once trained, we
use the probabilities post-selected on single photon events
as classification, which could be estimated experimentally
by averaging the number of single-photon events occurring
across a sequence of runs.

Model performance. We test the model by choosing a
threshold probability required for transactions to be classified
as genuine. The confusion matrix for a threshold of pth = 0.9
is given in Fig. 7. By varying the classification threshold,
a receiver operating characteristic (ROC) curve can be con-
structed, where each point in the curve is parametrized by
a value of the threshold. This is shown in Fig. 7, where the
true negative rate is plotted against the false negative rate. An
ideal classifier has a true negative rate of 1 and a false negative
rate of 0, as illustrated by the circle in the figure. Conversely,
randomly guessing at a given threshold probability results in
the dashed line in the figure. Our classifier has an area under
the ROC curve of 0.945, compared to the optimal value of 1.

For detection of fraudulent credit card transactions, it is
imperative to minimize the false negative rate (bottom left
square in the confusion matrix of Fig. 7), i.e., the rate of mis-
classifying a fraudulent transaction as genuine. Conversely, it
is less important to minimize the false positive rate (top right
square)—these are the cases of genuine transactions being
classed as fraudulent. Such cases can typically be addressed
by sending verification messages to cardholders. The larger
false positive rate in Fig. 7 can also be attributed to the large
asymmetry between the number of genuine and fraudulent
data points.

The results here illustrate a proof-of-principle hybrid
classical-quantum neural network able to perform classifica-
tion for a problem of genuine practical interest. While it is
simple to construct a classical neural network to outperform
this hybrid model, our network is restricted in both width and
depth due to the need to simulate the quantum network on
a classical device. It would be interesting to further explore
the performance of hybrid networks in conjunction with a
physical quantum computer.
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D. Generating images from labeled data

Next, we study the problem of training a quantum neural
network to generate quantum states that encode grayscale
images. We consider images of N × N pixels specified by a
matrix A whose entries ai j ∈ [0, 1] indicate the intensity of
the pixel on the ith row and jth column of the picture. These
images can be encoded into two-mode quantum states |A〉 by
associating each entry of the matrix with the coefficients of
the state in the Fock basis:

|A〉 = 1√
N

N−1∑
i, j=0

√
ai j |i〉| j〉, (41)

where N = ∑N−1
i, j=0 |ai j |2 is a normalization constant. We refer

to these as image states. The matrix coefficients ai j are the
probability amplitude of observing i photons in the first mode
and j photons in the second mode. Therefore, given many
copies of a state |A〉, the image can be statistically recon-
structed by averaging photon detection events at the output
modes. This architecture is illustrated in Fig. 4(c).

Image encoding strategy. Given a collection of images
A1, A2, . . . , An, we fix a set of input two-mode coherent states
|α1〉|β1〉, |α2〉|β2〉, . . . , |αn〉|βn〉. The goal is to train the quan-
tum neural network to perform the transformation |αi〉|βi〉 →
|Ai〉 for all i = 1, 2, . . . , n. Since the transformation is unitary,
the Gram matrix of input and output states must be equal, i.e.,
it must hold that

〈αi|α j〉〈βi|β j〉 = 〈Ai|Aj〉 (42)

for all i, j.
In general, it is not possible to find coherent states that sat-

isfy this condition for arbitrary collections of output states. To
address this, we consider output states with support in regions
of larger photon number and demand that their projection onto
the image Hilbert space of at most N − 1 photons in each
mode coincides, modulo normalization, with the desired out-
put states. Mathematically, if V̂ is the unitary transformation
performed by the quantum neural network, the goal is to train
the circuit to produce output states V̂|αi〉|βi〉 such that

�̂N V̂|αi〉|βi〉 = √
pi|Ai〉, (43)

where �̂N = ∑N−1
i, j=0 |i〉〈i| ⊗ | j〉〈 j| is a projector onto the

Hilbert space of at most N − 1 photons in each mode and
pi = Tr[�̂N V̂|αi〉〈αi| ⊗ |βi〉〈βi|V†] is the probability of ob-
serving the state in the subspace defined by this projector.
The quantum neural network therefore needs to learn not only
how to transform input coherent states into image states, it
must also learn to employ the additional dimensions in Hilbert
space to satisfy the constraints imposed by unitarity. This
approach still allows us to retrieve the encoded image by
performing photon counting, albeit with a penalty of pi in the
sampling rate.

As an example problem, we select a database of 4 × 4
images corresponding to the seven standard configurations of
four blocks used in the digital game TETRIS. These config-
urations are known as tetrominos. For a fixed value of the
parameter α > 0, the seven input states are set to

|ϕ1〉 = |α〉|α〉,
|ϕ2〉 = |−α〉|−α〉,

|ϕ3〉 = |α〉| − α〉,
|ϕ4〉 = |−α〉|α〉,
|ϕ5〉 = |iα〉|iα〉,
|ϕ6〉 = |−iα〉|−iα〉,
|ϕ7〉 = |iα〉|α〉,

each of which must be mapped to the image state of a
corresponding tetromino.

Training. We define the states

|�i〉 := V̂|ϕi〉, (44)

|ψi〉 := �̂4|�i〉
‖�̂4|�i〉‖

, (45)

i.e., |�i〉 is the output state of the network and |ψi〉 is the
normalized projection of the output state onto the image
Hilbert space of at most three photons in each mode. To train
the quantum neural network, we define the cost function

C =
7∑

i=1

|〈ψi|Ai〉|2 + γ P({|�i〉}), (46)

where |A1〉, |A2〉, . . . , |A7〉 are the image states of the seven
tetrominos, P is the trace penalty as in Eq. (C1) and we set
γ = 100. By choosing this cost function we are forcing each
input to be mapped to a specific image of our choice. In this
sense, we can view the images as labeled data of the form
(|ϕi〉, |Ai〉) where the label specifies which input state they
correspond to. We employed a network with 25 layers [see
Fig. 4(c)] and fixed a cutoff of 11 photons in the numerical
simulation, setting the displacement parameter of the input
states to α = 1.4.

Model performance. The resulting image states are illus-
trated in Fig. 8, where we plot the absolute value squared
of the coefficients in the Fock basis as grayscale pixels in an
image. Tetrominos are referred to in terms of the letter of they
alphabet they resemble. We fixed the desired output images
according to the sequence “LOTISJZ” such that the first input
state is mapped to the tetromino “L,” the second to “O,” and
so forth.

Figure 8 clearly illustrates the role of the higher-
dimensional components of the output states in satisfying the
constraints imposed by unitarity: the network learns not only
how to reproduce the images in the smaller Hilbert space
but also how to populate the remaining regions in order to
preserve the pairwise overlaps between states. For instance,
the input states |ϕ1〉 and |ϕ2〉 are nearly orthogonal, but the
images of the L and O tetrominos have a significant over-
lap. Consequently, the network learns to assign a relatively
small probability of projecting onto the image space while
populating the higher photon sectors in orthogonal subspaces.
Overall, the network is successful in reproducing the images
in the space of a few photons, precisely as it was intended to
do.

E. Hybrid quantum-classical autoencoder

In this example, we build a joint quantum-classical autoen-
coder [see Fig. 4(d)]. Conventional autoencoders are neural
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FIG. 8. Numerical experiment C. Output images for the “LOTISJZ” tetromino image data. The top row shows the output two-mode states
where the intensity of the pixel in the ith row and jth column is proportional to the probability of finding i photons in the first mode and j
photons in the second mode. The bottom row is a close-up in the image Hilbert space of up to three photons, renormalized with respect to the
probability of projecting the state onto that subspace. In other words, this row illustrates the states |ψi〉 of Eq. (45). The fidelities of the output
states |ψi〉 with respect to the desired image states are respectively 99.0%, 98.6%, 98.6%, 98.1%, 98.0%, 97.8%, and 98.8% for an average
fidelity of 98.4%. The probabilities pi of projecting the state onto the image space of at most three photons are respectively 5.8%, 36.0%,
21.7%, 62.1%, 40.7%, 71.3%, and 5.6%.

networks consisting of an encoder network followed by a
decoder network. The objective is to train the network to act
as an identity operation on input data. During training, the
network learns a restricted encoding of the input data—which
can be found by inspecting the small middle layer which
links the encoder and decoder. For the hybrid autoencoder,
our goal is to find a continuous phase-space encoding of the
first three Fock states |0〉, |1〉, and |2〉. Each of these states
will be encoded into the form of displaced vacuum states, then
decoded back to the correct Fock state form.

Model architecture. For the hybrid autoencoder, we fix
a classical feedforward architecture as an encoder and a
sequence of layers on one qumode as a decoder, as shown
in Fig. 4(d). The classical encoder begins with an input
layer with three dimensions, allowing for any real linear
combination in the {|0〉, |1〉, |2〉} subspace to be input into the
network. The input layer is followed by six hidden layers of
dimension five and a two-dimensional output layer. We use a
fully connected model with an ELU nonlinearlity.

The two output units of the classical network are used to
set the x and p components of a displacement gate acting
on the vacuum in one qumode. This serves as a continuous
encoding of the Fock states as displaced vacuum states. In
fact, displaced vacuum states have Gaussian distributions in
phase space, so the network has a resemblance to a variational
autoencoder [121]. We employ a total of 25 layers with con-
trollable parameters. The goal of the composite autoencoder is
to physically generate the Fock state originally input into the
network. Once the autoencoder has been trained, by removing
the classical encoder we are left with a method to generate
Fock states by varying the displacement of the vacuum. No-
tably, there is no need to specify which displacement should
be mapped to each Fock state: this is automatically taken care
of by the autoencoder.

Training. Our hybrid network is trained in the following
way. For each of the Fock states |0〉, |1〉, and |2〉, we input the
corresponding one-hot vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1)
into the classical encoder. Suppose that for an input |i〉 the
encoder outputs the vector (xi, pi ). This is used to displace

the vacuum in one mode, i.e., enacting D̂(αi )|0〉 with αi =
(xi, yi ). The output of the quantum decoder is the quantum
state |�i〉 = V̂D̂(αi)|0〉, with V̂ the unitary resulting from the
layers. We define the normalized projection

|ψi〉 = �̂3|�i〉
‖�̂3|�i〉‖

(47)

onto the subspace of the first three Fock states, with �̂3 being
the corresponding projector. As we have discussed previously,
this allows the network to output the state |ψi〉 probabilis-
tically upon a successful projection onto the subspace. The
objective is to train the network so that |ψi〉 is close to |i〉,
where closeness is measured using the fidelity |〈i|ψi〉|2. As
before, we introduce a trace penalty and set a cost function
given by

C =
2∑

i=0

(|〈i|ψi〉|2 − 1)2 + γ P({|�i〉}), (48)

with γ = 100 for the regularization parameter. Additionally,
we constrain the displacements in the input phase space to
a circle of radius |α| = 1.5 to make sure the encoding is as
compact as possible.

Model performance. After training, the classical encoder
element can be removed and we can analyze the quantum de-
coder by varying the displacements α applied to the vacuum.
Figure 9 illustrates the resulting performance by showing the
maximum fidelity between the output of the network and each
of the three Fock states used for training. For the three Fock
states |0〉, |1〉, and |2〉, the best matching input displacements
each lead to a decoder output state with fidelity of 99.5%.

The hybrid network has learned to associate different areas
of phase space with each of the three Fock states used for
training. It is interesting to investigate the resultant output
states from the quantum network when the vacuum is dis-
placed to intermediate points between the three areas. These
displacements can result in states that exhibit a transition be-
tween the Fock states. We use the wave function of the output
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FIG. 9. Numerical experiment D. (Left) Learning a continuous phase-space encoding of the Fock states. The quantum decoder element of
a trained classical-quantum autoencoder can be investigated by varying the displacement on the vacuum, which represents the chosen encoding
method. The hybrid network has learned to encode the Fock states in different regions of phase space. This is illustrated by a contour plot
showing, for each point in phase space, the largest fidelity between the output state for that displacement and the first three Fock states. The
thin white circle represents a clipping applied to input displacements during training, i.e., so that no displacement can ever reach outside of the
circle. The white circles at points (0.37,−1.08), (0.92, 1.02), and (−1.20, 0.53) represent the input displacements leading to optimal fidelities
with the |0〉, |1〉, and |2〉 Fock states, the white lines represent the lines interpolating these optimal displacements, and the white squares
represent the halfway points. (Right) Visualizing the wave functions of output states. The top row represents the position wave functions
of states with highest fidelity to |0〉, |1〉, and |2〉, respectively. The bottom row represents the wave functions of states with intermediate
displacements between the points corresponding to |0〉 and |1〉, |0〉 and |2〉, |1〉 and |2〉, respectively. Each wave function is rescaled so that the
maximum in absolute value is ±1, while the x axis denotes positions in the range [−4.5, 4.5].

states to visualize this transition. We plot on the right-hand
side of Fig. 9 the output wave functions which give best fi-
delity to each of the three Fock states |0〉, |1〉, |2〉, respectively.
Wave functions are also plotted for displacements which are
the intermediate points between those corresponding to: |0〉
and |1〉; |0〉 and |2〉; and |1〉 and |2〉, respectively. These plots
illustrate a smooth transition between the encoded Fock states
in phase space.

V. CONCLUSIONS

We have presented a quantum neural network architecture
which leverages the continuous-variable formalism of quan-
tum computing, and explored it in detail through both theoret-
ical exposition and numerical experiments. This scheme can
be considered as an analog of recent proposals for neural net-
works encoded using classical light [31], with the additional
ingredient that we leverage the quantum properties of the
electromagnetic field. Interestingly, as light-based systems are
already used in communication networks (both classical and
quantum), an optical CV neural network could be wired up
directly to communication channels, allowing us to avoid the
costly interconversion of classical and quantum information.

Several challenges remain in the experimental imple-
mentation of quantum neural networks. The implementation
of deterministic, tunable non-Gaussian gates with sufficient
strength is an outstanding goal in experimental quantum op-
tics, although several proposals and proof-of-principle experi-
ments have been reported [122–125]. Additionally, as with all
forms of quantum computing, it remains open whether quan-
tum advantages can be realized in the presence of decoher-
ence, or if error correction and fault tolerance are required. As

experimental capabilities continue to progress, CV quantum
neural networks can serve as a theoretical testbed to study
quantum machine learning models, both in terms of their
applications and differences compared to classical methods.

We have proposed variants for several well-known classical
neural networks, specifically fully connected, convolutional,
recurrent, and residual networks. We envision that in future
work specialized neural networks will also be inspired purely
from the quantum side. We have numerically analyzed the
performance of quantum neural network models and demon-
strated that they show promise in the tasks we considered. In
several of these examples, we employed joint architectures,
where classical and quantum networks are used together.
This is another promising direction for future exploration,
in particular given the current technological lead of classical
computers and the expectation that near-term quantum hard-
ware will be limited in size. The quantum part of the model
can be specialized to process classically difficult parts of a
larger computational to which it is naturally suited. In the
longer term, as larger-scale quantum computers are built, the
quantum component could take a larger role in hybrid models.
Finally, it would be a fruitful research direction to explore
the role that fundamental quantum physics concepts—such
as symmetry, interference, entanglement, and the uncertainty
principle—play in quantum neural networks more deeply.
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APPENDIX A: LINEAR INTERFEROMETERS

In this section, we derive Eq. (21) for the effect of a passive
interferometer on the eigenstates |x〉. A simple expression for
an eigenstate of the x̂ quadrature with eigenvalue x can be
found in Appendix 4 of Ref. [126]

|x〉 = π−1/4 exp

(
−1

2
x2 +

√
2xâ − 1

2
a†2

)
|0〉, (A1)

where â = 1√
2
(x̂ + i p̂) is the bosonic annihilation operator,

and |0〉 is the single mode vacuum state. The last expression
is independent of any prefactors used to define the quadrature
operator x̂ in terms of â and â†.

This can be easily generalized to N modes:

|x〉=
N⊗

i=1

|xi〉=π−N
4 exp

(
− 1

2
xT x+

√
2xT â†− 1

2
(â†)T â†

)
|0〉,

(A2)

where now

x = (x1, . . . , xN )T , (A3)

â† = (â†
1, . . . , â†

N )T , (â†)T = (â†
1, . . . , â†

N ), (A4)

and |0〉 is the multimode vacuum state. Now consider a
(passive) linear optical transformation Û

â†
i → Û â†

i Û† =
∑

j

Ui j â
†
j , (A5)

â† → U â†, (â†)T → (â†)T U T . (A6)

In general, U is an arbitrary unitary matrix, UU † = 1N . We
will however restrict U to have real entries and thus to
be orthogonal. In this case, U † = U T and hence U T U = U
U T = 1N .

We can now examine how the multimode state |x〉 trans-
forms under such a linear interferometer Û :

Û |x〉 = Û
[
π− N

4 exp

(
− 1

2
xT x +

√
2xT â† − 1

2
(â†)T â†

)
|0〉

]

= Û
exp

(− 1
2 xT x + √

2xT â† − 1
2 (â†)T â†

)
π

N
4

Û†Û |0〉

= exp
(
Û

[− 1
2 xT x + √

2xT â† − 1
2 (â†)T â†

]
Û†

)
π

N
4

|0〉.
(A7)

We can use the transformation in Eq. (A5) to write

Û |x〉 =exp
(− 1

2 xT x + √
2xT U â† − 1

2 (â†)T U T U â†
)

π
N
4

|0〉.
(A8)

Now we use that U T U = UU T = 1N to write the last expres-
sion as

Û |x〉 =exp
(− 1

2 xT UU T x + √
2xT U â† − 1

2 (â†)T â†
)

π
N
4

|0〉.
(A9)

Let us define the vector y = U T x and, to match the notation
of Eq. (21), the orthogonal matrix C = U T , in terms of which

we find

Û |x〉 = exp
(− 1

2 xT UU T x + √
2xT U â† − 1

2 (â†)T â†
)

π
N
4

|0〉

= exp
(− 1

2 yT y + √
2yT â† − 1

2 (â†)T â†
)

π
N
4

|0〉

= |y〉
= |Cx〉. (A10)

Note that the output state is also a product state. This
simple product transformation is a corollary of the elegant
results of Ref. [103].

APPENDIX B: CONVOLUTIONAL NETWORKS

In this section, we derive the connection between a transla-
tionally invariant Hamiltonian and a Block Toeplitz symplec-
tic transformation. The notion of translation symmetry and
Toeplitz structure are both connected to one-dimensional con-
volutions. Two-dimensional convolutions, naturally appearing
in image processing applications, are connected not with
Toeplitz matrices, but with doubly block circulant matrices
[16]. We will not consider this extension here, but the basic
ideas are the same.

Suppose we have a Hamiltonian operator Ĥ = Ĥ (x̂, p̂)
which generates a Gaussian unitary Û = exp(−it Ĥ ) on N
modes. We are interested only in the matrix multiplication
part of an affine transformation, i.e., Ĥ does not generate
displacements. Under these conditions, Ĥ has to be quadratic
in the operators (x̂, p̂),

Ĥ = [x̂T p̂T ]

[
Hxx Hxp

Hpx Hpp

][
x̂

p̂

]
, (B1)

where each Huv is an N × N matrix. We will call the inner
matrix in this equation H̃ . In the phase space picture, the
symplectic transformation MH generated by H is obtained via
the rule [49]

MH = exp(�H̃ ), (B2)

where � is the symplectic form from Eq. (8).
We now fix Ĥ to be translationally invariant, i.e., Ĥ does

not change under the transformation[
x̂
p̂

]
�→

[
T x̂
T p̂

]
, (B3)

where we have introduced the shift operator T which maps
x̂i �→ x̂i+1 and p̂i �→ p̂i+1. We assume periodic boundary con-
ditions on the modes, x̂N �→ x̂1 and p̂N �→ p̂1, which allows
us to represent translation as an N × N orthogonal matrix:

T =
∑

i

|i + 1〉〈i|. (B4)

The translationally-invariant condition on H translates to the
statement that

[T, Huv] = 0 (B5)

for u, v ∈ {x, p}.
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FIG. 10. Cost function and circuit parameters during 60 steps of stochastic gradient descent training for the task of fitting the sine function
from Fig. 6. The active parameters are plotted in orange, while all others are plotted in purple. As hyperparameters, we used an initial learning
rate of 0.1 which has an inverse decay of 0.25, a penalty strength γ = 10, a regularization strength of 0.5, batch size of 50, a cutoff of 10 for
the Hilbert-space dimension, and randomly chosen but fixed initial circuit parameters.

In the 2N-dimensional phase space, the N-dimensional
translation matrix takes the form T ⊕ T . Considering the
expression

[�H̃ , T ⊕ T ] =
[

[Mpx, T ] [Mpp, T ]

−[Mxx, T ] −[Mxp, T ]

]
= 0, (B6)

we see that the symplectic matrix MH from Eq. (B2) must also
be symmetric under translations:

[MH , T ⊕ T ] = 0. (B7)

Writing this matrix in a block form,

MH =
[

Mxx Mxp
Mpx Mpp

]
, (B8)

we conclude that we must also have

[Muv, T ] = 0 (B9)

for each u, v ∈ {x, p}. Expressing this in the equivalent form

T T MuvT = Muv, (B10)

we see that the following condition must hold on the entries
of each Muv:

[Muv]i j = [Muv]i+1, j+1. (B11)

In other words, when the generating Hamiltonian is trans-
lationally invariant, each block of the corresponding sym-
plectic matrix is a Toeplitz matrix, which implements a one-
dimensional convolution.

APPENDIX C: REGULARIZATION AND OPTIMIZATION

Penalties and regularization. In the numerical simulations
of quantum circuits, each qumode is truncated to a given

cutoff dimension in the infinite-dimensional Hilbert space
of Fock states. During training, it is possible for the gate
parameters to reach values such that the output states have
significant support outside of the truncated Hilbert space.
In a simulation, this results in unnormalized output states
and unreliable computations. To address this issue, we add
a penalty to the loss function that penalizes unnormalized
quantum states. Given a set of output states {|ψxi〉}, we define
the penalty function

P
({∣∣ψxi

〉}) =
∑

i

(∣∣〈ψxi

∣∣�̂H
∣∣ψxi

〉∣∣2 − 1
)2

, (C1)

where �̂H is a projector onto the truncated Hilbert space of
the simulation. This function penalizes unnormalized states
whose trace is different to one. The overall cost function to be
minimized is then

C = L + γ P
({∣∣ψxi

〉})
, (C2)

where γ > 0 is a user-defined hyperparameter.
An alternate approach to the trace penalty is to regularize

the circuit parameters that can alter the energy of the state,
which we refer to as the active parameters. Using the curve
fitting example from Sec. IV B, Fig. 10 compares optimizing
the function of Eq. (C2) without any penalty (first column
from the left), imposing an L2 regularizer (second column),
using an L1 regularizer (third column), and using the trace
penalty (fourth column). Without any strategy to keep the
parameters small, learning fails due to unstable simulations:
the trace of the state drops in fact to 0.1. Both regularization
strategies as well as the trace penalty manage to bring the loss
function to almost zero within a few steps while maintaining
the unit trace of the state. However, there are interesting dif-
ferences. While L2 regularization decreases the magnitude of
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the active parameters, L1 regularization dampens all but two
of them. The undamped parameters turn out to be the circuit
parameters for the nonlinear gates in layers 3 and 4, a hint that
these nonlinearities are most essential for the task. The trace
penalty induces heavy fluctuations in the loss function for the
first 20 steps, but finds parameters that are larger in absolute
value than those found by L2 regularization, with a lower final
loss.

Optimization methods. We also analyzed different opti-
mization algorithms for the sine curve-fitting problem. Fig-
ure 11 compares three numerical methods and two methods
based on automatic differentiation in a simulator. Numerical
stochastic gradient descent (SGD) approximates the gradients
with a finite differences estimate. Nelder-Mead is a gradient-
free technique, while the sequential least-squares program-
ming (SLSQP) method solves quadratic subproblems with
approximate gradients. These latter two converge significantly

FIG. 11. Loss function of the different optimizers mentioned in
the text for the curve-fitting task.

slower, but can have advantages in smoothness and speed
per iteration. The Adam optimizer with adaptive learning rate
performed better than vanilla SGD in this experiment.
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