PROBLEM 1. Show that, if H is the parity-check matrix of a code of length n, then the code has minimum distance d if every $d - 1$ rows of H are linearly independent and some d rows are linearly dependent.

PROBLEM 2. In this problem we will show that there exists a binary linear code which satisfies the Gilbert–Varshamov bound. In order to do so, we will construct a $n \times r$ parity-check matrix H and we will use Problem 1.

(a) We will choose rows of H one-by-one. Suppose i rows are already chosen. Give a combinatorial upper-bound on the number of distinct linear combinations of these i rows taken $d - 2$ or fewer at a time.

(b) Provided this number is strictly less than $2^r - 1$, can we choose another row different from these linear combinations, and keep the property that any $d - 1$ rows of the new $(i + 1) \times r$ matrix are linearly independent?

(c) Conclude that there exists a binary linear code of length n, with at most r parity-check equations and minimum distance at least d, provided

$$1 + \binom{n-1}{1} + \cdots + \binom{n-1}{d-2} < 2^r. \quad (1)$$

(d) Show that there exists a binary linear code with $M = 2^k$ distinct codewords of length n provided $M \sum_{i=0}^{d-2} \binom{n-1}{i} < 2^n$.

PROBLEM 3. The weight of a binary sequence of length N is the number of 1’s in the sequence. The Hamming distance between two binary sequences of length N is the weight of their modulo 2 sum. Let x_1 be an arbitrary codeword in a linear binary code of block length N and let x_0 be the all-zero codeword. Show that for each $n \leq N$, the number of codewords at distance n from x_1 is the same as the number of codewords at distance n from x_0.

PROBLEM 4.

(a) Show that in a binary linear code, either all codewords contain an even number of 1’s or half the codewords contain an odd number of 1’s and half an even number.

(b) Let $x_{m,n}$ be the nth digit in the mth codeword of a binary linear code. Show that for any given n, either half or all of the $x_{m,n}$ are zero. If all of the $x_{m,n}$ are zero for a given n, explain how the code could be improved.

(c) Show that the average number of ones per codeword, averaged over all codewords in a linear binary code of blocklength N, can be at most $N/2$.
Problem 5. Suppose C_1 and C_2 are binary linear codes of block-length n. Denote the number of codewords of C_i by M_i and the minimum distance of C_i by d_i. For $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ let $\langle u | v \rangle$ denote the concatenation of the two sequences, i.e.,

$$\langle u | v \rangle = (u_1, \ldots, u_n, v_1, \ldots, v_n).$$

Let C denote the binary code of block-length $2n$ obtained from C_1 and C_2 as follows:

$$C = \{ \langle u | u \oplus v \rangle : u \in C_1, v \in C_2 \}.$$

(a) Is C a linear code?

(b) How many codewords does C have? Carefully justify your answer. What is the rate R of C in terms of the rates R_1 and R_2 of the codes C_1 and C_2?

(c) Show that the Hamming weight of $\langle u | u \oplus v \rangle$ satisfies

$$w_H(\langle u | u \oplus v \rangle) \geq w_H(v).$$

(d) Show that the Hamming weight of $\langle u | u \oplus v \rangle$ satisfies

$$w_H(\langle u | u \oplus v \rangle) \geq\begin{cases} w_H(v) & \text{if } v \neq 0 \\ 2w_H(u) & \text{else.} \end{cases}$$

(e) Show that the minimum distance d of C satisfies

$$d \geq \min\{2d_1, d_2\}.$$

(f) Show that $d = \min\{2d_1, d_2\}$.