Problem 1.

(a) Recall that C is uniquely decodable means that C^* is injective, i.e., for any $u^n \neq v^m$ we have $C^n(u^n) \neq C^m(v^m)$. In particular, whenever $u^n \neq v^n$ we have $C^n(u^n) \neq C^n(v^n)$. The last statement is the definition of C^n being injective.

(b) Since we are supposed to show that $u_1 \neq v_1$, we may assume that $|U| \geq 2$.

If C is not uniquely decodable, then there are $u^n \neq v^m$ such that $C^n(u^n) = C^m(v^m)$. Among all such (u^n, v^m) choose one for which $n + m$ is smallest, and assume (without loss of generality) that $m \leq n$. If $m \geq 1$ we are done, since in this case we must have $u_1 \neq v_1$ (because, if not, we can replace u^n by $\tilde{u}^{n-1} = u_2 \ldots u_n$ and v^m by $\tilde{v}^{m-1} = v_2 \ldots v_m$, contradicting $m + n$ being smallest).

Otherwise, $m = 0$ and $v^m = \lambda$ (the null string) with $C(v^m) = \lambda$. Since $u^n \neq v^m = \lambda$ and $C(u^n) = \lambda$, we have a letter $a = u_1 \in U$ such that $C(a) = \lambda$. Take now any letter $b \in U$ with $b \neq a$, and note that $C^1(ab) = C^1(b)$, i.e., there are two source sequences that differ in their first letter and have the same representation.

(c) C is not uniquely decodable means that there is $u^n \neq v^m$ such that $C^n(u^n) = C^m(v^m)$. If $n = m$ then we are done: this would by definition mean that C^* is not injective. If $n \neq m$, we could attempt the following reasoning: observe $C^*(u^n v^m) = C^*(v^m u^n)$ and conclude that C^{m+n} is not injective. However this reasoning fails because we can’t be sure that $u^n v^m \neq v^m u^n$ just because $u^n \neq v^m$. (E.g., suppose $u^n = a\alpha$ and $v^m = \alpha a$). This is the reason the problem has “part (b)”.

As C is not uniquely decodable, we can find u^n and v^m as in part (b). Now observe that (i) $u^n v^m \neq v^m u^n$ (as they differ in their first letter), (ii) $u^n v^m$ and $v^m u^n$ have the same length $k = n + m$, and $C^k(u^n v^m) = C^k(v^m u^n)$, i.e., C^k is not singular.

Moral of the problem: it is clear that the statement “C^* is injective” is a stronger statement than “for every n, C^n is injective” — since the first ensures that $u^n \neq v^n$ are assigned different codewords not only when $n = m$ but also for $n \neq m$ — so part (a) is unsurprising.

The statement “C^n is injective for each $n” only means that different source sequences of same length get different representations; it is not immediately clear that this will also imply that source sequences of different lengths also get different representations. Part (c) shows this is indeed the case: that injectiveness of C^n for every n implies the injectiveness of C^*.
PROBLEM 2.

(a) We already know that

\[H(X) + H(Y) \geq H(XY), \]
\[H(Y) + H(Z) \geq H(YZ), \]

and

\[H(Z) + H(X) \geq H(ZX). \]

Adding these inequalities together and diving by two gives

\[H(X) + H(Y) + H(Z) \geq \frac{1}{2}[H(XY) + H(YZ) + H(ZX)]. \]

(b) The difference between the left and right sides, i.e.,

\[H(XY) + H(YZ) - H(XYZ) - H(Y), \]

equals

\[H(X|Y) - H(X|YZ) = I(X; Z|Y), \]

which is always positive.

(c) Using (b) with \((YZX)\) and \((ZXY)\) in the role of \((XYZ)\) gives the inequalities

\[H(YZ) + H(ZX) \geq H(XYZ) + H(Z) \]

and

\[H(ZX) + H(XY) \geq H(XYZ) + H(X). \]

Adding the inequality in (b) to these two gives

\[2[H(XY) + H(YZ) + H(ZX)] \geq 3H(XYZ) + H(X) + H(Y) + H(Z). \]

(d) Since \(H(X) + H(Y) + H(Z) \geq H(XYZ),\) (c) yields

\[2[H(XY) + H(YZ) + H(ZX)] \geq 4H(XYZ). \]

(e) Let \(\{(x_i, y_i, z_i) : i = 1, \ldots, n\} \) be the xyz-coordinates of the \(n \) points. Let \(X, Y \) and \(Z \) be random variables with \(\Pr((X,Y,Z) = (x_i, y_i, z_i)) = 1/n \) for every \(1 \leq i \leq n \). Then, \(H(XYZ) = \log_2 n. \) Furthermore, the random pair \((XY)\) takes values in the projection of the \(n \) points to the \(xy \) plane and similarly for \((YZ)\) and \((ZX)\). Thus \(H(XY) \leq \log_2 n_{xy}, \) \(H(YZ) \leq \log_2 n_{yz}, \) and \(H(ZX) \leq \log_2 n_{zx}. \) Part (d) now yields

\[\log_2[n_{xy}n_{yz}n_{zx}] \geq H(XY) + H(YZ) + H(ZX) \geq 2H(XYZ) = 2\log_2 n, \]

which implies that \(n_{xy}n_{yz}n_{zx} \geq n^2. \)

The relationship between \(H(XYZ) \) and \(H(XY), H(YZ) \) and \(H(ZX) \) is a special case of Han’s inequality, which, for a collection of \(n \) random variables relates the sum of the \(\binom{n}{k} \) joint entropies of \(k \) out of \(n \) random variables to the sum of the \(\binom{n}{k+1} \) entropies of \(k+1 \) out of \(n \) random variables.

The combinatorial fact about the projections of points in 3D is known as Shearer’s lemma.
Problem 3.

\[H(X) = -\sum_{k=1}^{M} P_X(a_k) \log P_X(a_k) \]
\[= -\sum_{k=1}^{M-1} (1 - \alpha) P_Y(a_k) \log[(1 - \alpha) P_Y(a_k)] - \alpha \log \alpha \]
\[= (1 - \alpha) H(Y) - (1 - \alpha) \log(1 - \alpha) - \alpha \log \alpha \]

Since \(Y \) is a random variable that takes \(M - 1 \) values \(H(Y) \leq \log(M - 1) \) with equality if and only if \(Y \) takes each of its possible values with equal probability.

Problem 4.

(a) Using the chain rule for mutual information,

\[I(X; Y; Z) = I(X; Z) + I(Y; Z | X) \geq I(X; Z), \]

with equality iff \(I(Y; Z | X) = 0 \), that is, when \(Y \) and \(Z \) are conditionally independent given \(X \).

(b) Using the chain rule for conditional entropy,

\[H(X, Y | Z) = H(X | Z) + H(Y | X, Z) \geq H(X | Z), \]

with equality iff \(H(Y | X, Z) = 0 \), that is, when \(Y \) is a function of \(X \) and/or \(Z \).

(c) Using first the chain rule for entropy and then the definition of conditional mutual information,

\[H(X, Y, Z) - H(X, Y) = H(Z | X, Y) = H(Z | X) - I(Y; Z | X) \leq H(Z | X) = H(X, Z) - H(X), \]

with equality iff \(I(Y; Z | X) = 0 \), that is, when \(Y \) and \(Z \) are conditionally independent given \(X \).

(d) Using the chain rule for mutual information,

\[I(X; Z | Y) + I(Z; Y) = I(X, Y; Z) = I(Z; Y | X) + I(X; Z), \]

and therefore

\[I(X; Z | Y) = I(Z; Y | X) - I(Z; Y) + I(X; Z). \]

We see that this inequality is actually an equality in all cases.

Problem 5. Let \(X' \) denote \(X_1, \ldots, X_i \).

(a) By stationarity we have for all \(1 \leq i \leq n \),

\[H(X_n|X^{n-1}) \leq H(X_n|X_{n-i+1}, X_{n-i+2}, \ldots, X_{n-1}) = H(X_i|X^{i-1}), \]

which implies that,

\[H(X_n|X^{n-1}) = \frac{\sum_{i=1}^{n} H(X_n|X^{n-1})}{n} \]
\[\leq \frac{\sum_{i=1}^{n} H(X_i|X^{i-1})}{n} \]
\[= \frac{H(X_1, X_2, \ldots, X_n)}{n}. \]
(b) By the chain rule for entropy,

\[H(X_1, X_2, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^{n} H(X_i | X^{i-1}) \]

\[= H(X_n | X^{n-1}) + \sum_{i=1}^{n-1} \frac{H(X_i | X^{i-1})}{n} \]

\[= H(X_n | X^{n-1}) + \frac{H(X_1, X_2, \ldots, X_{n-1})}{n}. \]

From stationarity it follows that for all \(1 \leq i \leq n\),

\[H(X_n | X^{n-1}) \leq H(X_i | X^{i-1}), \]

which further implies, by summing both sides over \(i = 1, \ldots, n-1\) and dividing by \(n-1\), that,

\[H(X_n | X^{n-1}) \leq \frac{\sum_{i=1}^{n-1} H(X_i | X^{i-1})}{n-1} \]

\[= \frac{H(X_1, X_2, \ldots, X_{n-1})}{n-1}. \]

Combining (6) and (8) yields,

\[\frac{H(X_1, X_2, \ldots, X_n)}{n} \leq \frac{1}{n} \left[\frac{H(X_1, X_2, \ldots, X_{n-1})}{n-1} + H(X_1, X_2, \ldots, X_{n-1}) \right] \]

\[= \frac{H(X_1, X_2, \ldots, X_{n-1})}{n-1}. \]

Problem 6. By the chain rule for entropy,

\[H(X_0 | X_{n-1}, \ldots, X_{-1}) = H(X_0, X_{n-1}, \ldots, X_{-1}) - H(X_{n-1}, \ldots, X_{-1}) \]

\[= H(X_0, X_1, \ldots, X_n) - H(X_1, \ldots, X_n) \]

\[= H(X_0 | X_1, \ldots, X_n), \]

where (12) follows from stationarity.

Problem 7. \(X \rightarrow Y \rightarrow (Z, W)\) implies that \(I(X; Z, W | Y) = 0\). Then,

\[I(X; Y) + I(Z; W) = I(X; Y) + I(X; Z, W | Y) + I(Z; W) = I(X; Y, Z, W) + I(Z; W) \]

Notice that \(I(X; Y) + I(X; Z, W | Y) = I(X; Y, Z, W)\) follows from chain rule. Using the chain rule for a couple of times, we obtain the following steps.

\[I(X; Y, Z, W) + I(Z; W) = I(X; Z) + I(X; Y, W | Z) + I(Z; W) \]

\[= I(X; Z) + I(X; Y | W, Z) + I(X; W | Z) + I(Z; W) \]

\[= I(X; Z) + I(X; Y | W, Z) + I(X, Z; W) \]

\[\geq I(X; Z) + I(X; W) \]

as \(I(X; Z; W) \geq I(X; W)\)