ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 15 Midterm exam

Information Theory and Coding Oct. 30, 2018

4 problems, 76 points 165 minutes 1 sheet (2 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (12 points) Recall that for a code $\mathcal{C} : \mathcal{U} \to \{0, 1\}^*$, we define $\mathcal{C}^n : \mathcal{U}^n \to \{0, 1\}^*$ as $\mathcal{C}^n(u_1 \dots u_n) = \mathcal{C}(u_1) \dots \mathcal{C}(u_n)$.

- (a) (4 pts) Show that if C is uniquely decodable, then for all $n \ge 1$, C^n is injective.
- (b) (4 pts) Suppose C is not uniquely decodable. Show that there are u^n and v^m such that $u_1 \neq v_1$ and $C^n(u^n) = C^m(v^m)$.
- (c) (4 pts) Suppose C is not uniquely decodable. Show that there is a k such that C^k is not injective. [Hint: try k = n + m.]

PROBLEM 2. (12 points) Suppose X_1, \ldots, X_n are random variables. Let

$$Y_i = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$$

denote the collection which includes all the X's, except X_i .

- (a) (4 pts) Show that $\sum_{i=1}^{n} H(X_i|Y_i) \le H(X^n)$.
- (b) (4 pts) Show that $\sum_{i=1}^{n} H(Y_i) \ge (n-1)H(X^n)$.
- (c) (4 pts) What are the conditions for equality to hold in the parts above?

PROBLEM 3. (20 points) Suppose X_1, X_2, \ldots is a stochastic process with $X_i \in \{1, 2, 3, 4\}$. The process is Markov, i.e., $\Pr(X_{n+1} = x_{n+1} | X^n = x^n) = \Pr(X_{n+1} = x_{n+1} | X_n = x_n)$, and $\Pr(X_{n+1} = j | X_n = i)$ is found as the (i, j) entry of the matrix

$$P = \begin{bmatrix} 1 - \alpha & \alpha & \\ \alpha & 1 - \alpha & \\ & & 1/2 & 1/2 \\ & & & 1/2 & 1/2 \end{bmatrix}$$

The initial state of the process X_1 is chosen according to the distribution

$$\Pr(X_1 = 1) = p, \quad \Pr(X_1 = 4) = 1 - p,$$

with 0 . Note that the structure of the matrix <math>P ensures that if $X_1 = 1$, then $X_n \in \{1, 2\}$ for all n, and if $X_1 = 4$ then $X_n \in \{3, 4\}$ for all n. Consequently, $\Pr(X_n \in \{1, 2\}) = p$ and $\Pr(X_n \in \{3, 4\}) = 1 - p$.

- (a) (4 pts) Is the process stationary? (Not just 'yes' or 'no', explain your answer.)
- (b) (4 pts) For $n \ge 1$, find $h_i = H(X_{n+1}|X_n = i)$ for i = 1, 2, 3, 4. Does your answer depend on n?
- (c) (4 pts) Find $a_n = H(X_n | X^{n-1}), n = 1, 2, \dots$
- (d) (4 pts) Find $b_n = H(X^n)/n, n = 1, 2, ...$
- (e) (4 pts) Does the entropy rate $H = \lim_{n \to \infty} b_n$ exist? If so, what is H?

PROBLEM 4. (32 points) Suppose U is a random variable taking values in $\{1, 2, ...\}$. Set $L = \lfloor \log_2 U \rfloor$, that is:

- (a) (4 pts) Show that $H(U|L = j) \le j, j = 0, 1, ...$
- (b) (4 pts) Show that $H(U|L) \leq E[L]$.
- (c) (4 pts) Show that $H(U) \leq E[L] + H(L)$.
- (d) (4 pts) Suppose that $\Pr(U=1) \ge \Pr(U=2) \ge \dots$ Show that $1 \ge i \Pr(U=i)$.
- (e) (4 pts) With U as in (d), and using the result of (d), show that $E[\log_2 U] \leq H(U)$ and conclude that $E[L] \leq H(U)$.
- (f) (8 pts) Suppose that N is a random variable taking values in $\{0, 1, ...\}$ with distribution p_N and $E[N] = \mu$. Let G be a geometric random variable with mean μ , i.e., $p_G(n) = \mu^n / (1 + \mu)^{1+n}, n \ge 0$. Show that $H(G) - H(N) = D(p_N || p_G) \ge 0$, and conclude that $H(N) \le g(\mu)$ with $g(x) = (1 + x) \log(1 + x) - x \log x$. [Hint: Let $f(n, \mu) = -\log p_G(n) = (n + 1) \log(1 + \mu) - n \log(\mu)$. First show that $E[f(G, \mu)] = E[f(N, \mu)]$, and consequently $H(G) = \sum_n p_N(n) \log(1/p_G(n))$.]
- (g) (4 pts) Show that for U as in (d) and g(x) as in (f),

$$E[L] \ge H(U) - g(H(U)).$$

[Hint: combine (f), (e), (c).]