ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 15
Information Theory and Coding
Midterm exam

4 problems, 76 points
165 minutes
1 sheet (2 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.

Problem 1. (12 points) Recall that for a code $\mathcal{C}: \mathcal{U} \rightarrow\{0,1\}^{*}$, we define $\mathcal{C}^{n}: \mathcal{U}^{n} \rightarrow\{0,1\}^{*}$ as $\mathcal{C}^{n}\left(u_{1} \ldots u_{n}\right)=\mathcal{C}\left(u_{1}\right) \ldots \mathcal{C}\left(u_{n}\right)$.
(a) (4 pts) Show that if \mathcal{C} is uniquely decodable, then for all $n \geq 1, \mathcal{C}^{n}$ is injective.
(b) (4 pts) Suppose \mathcal{C} is not uniquely decodable. Show that there are u^{n} and v^{m} such that $u_{1} \neq v_{1}$ and $\mathcal{C}^{n}\left(u^{n}\right)=\mathcal{C}^{m}\left(v^{m}\right)$.
(c) (4 pts) Suppose \mathcal{C} is not uniquely decodable. Show that there is a k such that \mathcal{C}^{k} is not injective. [Hint: try $k=n+m$.]

Problem 2. (12 points) Suppose X_{1}, \ldots, X_{n} are random variables. Let

$$
Y_{i}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)
$$

denote the collection which includes all the X 's, except X_{i}.
(a) (4 pts) Show that $\sum_{i=1}^{n} H\left(X_{i} \mid Y_{i}\right) \leq H\left(X^{n}\right)$.
(b) (4 pts) Show that $\sum_{i=1}^{n} H\left(Y_{i}\right) \geq(n-1) H\left(X^{n}\right)$.
(c) (4 pts) What are the conditions for equality to hold in the parts above?

Problem 3. (20 points) Suppose X_{1}, X_{2}, \ldots is a stochastic process with $X_{i} \in\{1,2,3,4\}$. The process is Markov, i.e., $\operatorname{Pr}\left(X_{n+1}=x_{n+1} \mid X^{n}=x^{n}\right)=\operatorname{Pr}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)$, and $\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)$ is found as the (i, j) entry of the matrix

$$
P=\left[\begin{array}{cccc}
1-\alpha & \alpha & & \\
\alpha & 1-\alpha & & \\
& & 1 / 2 & 1 / 2 \\
& & 1 / 2 & 1 / 2
\end{array}\right]
$$

The initial state of the process X_{1} is chosen according to the distribution

$$
\operatorname{Pr}\left(X_{1}=1\right)=p, \quad \operatorname{Pr}\left(X_{1}=4\right)=1-p,
$$

with $0<p<1$. Note that the structure of the matrix P ensures that if $X_{1}=1$, then $X_{n} \in\{1,2\}$ for all n, and if $X_{1}=4$ then $X_{n} \in\{3,4\}$ for all n. Consequently, $\operatorname{Pr}\left(X_{n} \in\right.$ $\{1,2\})=p$ and $\operatorname{Pr}\left(X_{n} \in\{3,4\}\right)=1-p$.
(a) (4 pts) Is the process stationary? (Not just 'yes' or 'no', explain your answer.)
(b) (4 pts) For $n \geq 1$, find $h_{i}=H\left(X_{n+1} \mid X_{n}=i\right)$ for $i=1,2,3,4$. Does your answer depend on n ?
(c) (4 pts) Find $a_{n}=H\left(X_{n} \mid X^{n-1}\right), n=1,2, \ldots$
(d) (4 pts) Find $b_{n}=H\left(X^{n}\right) / n, n=1,2, \ldots$
(e) (4 pts) Does the entropy rate $H=\lim _{n} b_{n}$ exist? If so, what is H ?

Problem 4. (32 points) Suppose U is a random variable taking values in $\{1,2, \ldots\}$. Set $L=\left\lfloor\log _{2} U\right\rfloor$, that is:

$$
\begin{array}{r|rrrrrrrrrrrrrr}
u & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots & 16 & \ldots & 32 & \ldots \\
l & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & \ldots & 4 & \ldots & 5 & \ldots
\end{array}
$$

(a) (4 pts) Show that $H(U \mid L=j) \leq j, j=0,1, \ldots$.
(b) (4 pts) Show that $H(U \mid L) \leq E[L]$.
(c) (4 pts) Show that $H(U) \leq E[L]+H(L)$.
(d) (4 pts) Suppose that $\operatorname{Pr}(U=1) \geq \operatorname{Pr}(U=2) \geq \ldots$. Show that $1 \geq i \operatorname{Pr}(U=i)$.
(e) (4 pts) With U as in (d), and using the result of (d), show that $E\left[\log _{2} U\right] \leq H(U)$ and conclude that $E[L] \leq H(U)$.
(f) (8 pts) Suppose that N is a random variable taking values in $\{0,1, \ldots\}$ with distribution p_{N} and $E[N]=\mu$. Let G be a geometric random variable with mean μ, i.e., $p_{G}(n)=\mu^{n} /(1+\mu)^{1+n}, n \geq 0$.
Show that $H(G)-H(N)=D\left(p_{N} \| p_{G}\right) \geq 0$, and conclude that $H(N) \leq g(\mu)$ with $g(x)=(1+x) \log (1+x)-x \log x$.
[Hint: Let $f(n, \mu)=-\log p_{G}(n)=(n+1) \log (1+\mu)-n \log (\mu)$. First show that $E[f(G, \mu)]=E[f(N, \mu)]$, and consequently $\left.H(G)=\sum_{n} p_{N}(n) \log \left(1 / p_{G}(n)\right).\right]$
(g) (4 pts) Show that for U as in (d) and $g(x)$ as in (f),

$$
E[L] \geq H(U)-g(H(U))
$$

[Hint: combine (f), (e), (c).]

