Solution 1. First we compute T_s, which is the duration of one bit:

$$T_s = \frac{1}{1 \text{ Mbps}} = 10^{-6} \text{ s}.$$

Now, we can calculate the energy of the signal (i.e. the energy per bit), which is the same for every j:

$$E_b = b^2 T_s.$$

The bit error probability is given by $Q\left(\frac{\sqrt{E_b}}{\sigma}\right)$. In our case $\sigma = \sqrt{N_0/2} = 10^{-1}$, thus we need to solve

$$10^{-5} = Q\left(\frac{10^{-3} \times b}{10^{-1}}\right) = Q\left(10^{-2} \times b\right),$$

hence $b = Q^{-1}(10^{-5}) \times 10^2 \approx 426.5$.

Solution 2.

(a) There are various possibilities to choose an orthogonal basis. One is $\phi_1(t) = \frac{w_0(t)}{\|w_0\|} = \sqrt{\frac{1}{T_s}} w_0(t)$ and $\phi_2(t) = \frac{w_2(t)}{\|w_2\|} = \sqrt{\frac{1}{T_s}} w_2(t)$. Another choice, that we prefer and will be our choice in this solution is

$$\psi_1(t) = \sqrt{\frac{2}{T_s}} 1_{[0,T_s/2]}(t)$$
$$\psi_2(t) = \sqrt{\frac{2}{T_s}} 1_{[T_s/2,T_s]}(t).$$

With the latter choice the signal space is

$$w_0 = \sqrt{\frac{T_s}{2}} (1,1)^T$$
$$w_1 = \sqrt{\frac{T_s}{2}} (-1,-1)^T$$
$$w_2 = \sqrt{\frac{T_s}{2}} (1,-1)^T$$
$$w_3 = \sqrt{\frac{T_s}{2}} (-1,1)^T$$
(b) \(U_0 \in \{\pm 1\} \) and \(U_1 \in \{\pm 1\} \) are mapped into

\[
U_0 \sqrt{\frac{T_s}{2}} \psi_1(t) + U_1 \sqrt{\frac{T_s}{2}} \psi_2(t).
\]

The mapping is shown below:

![Mapping Diagram](image)

The mapping is such that neighboring points differ by one bit. This minimizes the bit-error probability since when we make an error chances are that we choose a neighbor of the correct symbol. Notice that we may decode each bit independently. In fact the first bit is decoded to a 1 iff the observation is to the right of the vertical axis and the second bit is 1 iff it is above the horizontal axis. The bit error probability is therefore

\[
P_b = Q \left(\frac{\sqrt{T_s/2}}{\sqrt{N_0/2}} \right) = Q \left(\frac{T_s}{N_0} \right).
\]

(c) Notice that \(\psi_2(t) = \psi_1(t - \frac{T_s}{2}) \). Hence one matched filter is enough. The receiver block diagram is:

![Receiver Block Diagram](image)

(d) \(E_b = \frac{E_s}{2} = \frac{T_s}{2} \) and the power is \(\frac{E_s}{T_s} = 1 \).

Solution 3.

(a) Using the identity \(\cos^2(a) = \frac{1}{2} [1 + \cos(2a)] \), the average energy can be computed as

\[
\int_{-\infty}^{\infty} |w_i(t)|^2 \, dt = \frac{2E}{T} \int_{0}^{T} \cos^2(2\pi(f_c + i\Delta f)t) \, dt
\]

\[
= \frac{2E}{T} \left[\frac{t}{2} + \frac{\sin(4\pi(f_c + i\Delta f)t)}{8\pi(f_c + i\Delta f)} \right]_{0}^{T}
\]

\[
= E \left[1 + \frac{\sin(4\pi i\Delta f T)}{4\pi(f_c + i\Delta f)} \right] \approx E. \quad \text{(*)}
\]

The last approximation follows since \(f_c \gg \Delta f \) implies the second term in the square brackets is negligible.
Orthogonality requires
\[\mathcal{E} \frac{2}{T} \int_0^T \cos(2\pi(f_c + i \Delta f)t) \cos(2\pi(f_c + j \Delta f)t) \, dt = 0, \]
for every \(i \neq j \). Using the trigonometric identity \(\cos(\alpha) \cos(\beta) = \frac{1}{2} \cos(\alpha + \beta) + \frac{1}{2} \cos(\alpha - \beta) \), an equivalent condition is
\[\mathcal{E} \frac{2}{T} \int_0^T \left[\cos(2\pi(i - j)\Delta ft) + \cos(2\pi(2f_c + (i + j)\Delta f)t) \right] \, dt = 0. \]

Integrating we obtain
\[\mathcal{E} \left[\frac{\sin(2\pi(i - j)\Delta fT)}{2\pi(i - j)\Delta f} + \frac{\sin(2\pi(2f_c + (i + j)\Delta f)T)}{2\pi(2f_c + (i + j)\Delta f)} \right] = 0. \]

As \(f_cT \) is assumed to be an integer, the result can be simplified to
\[\mathcal{E} \left[\frac{\sin(2\pi(i - j)\Delta fT)}{2\pi(i - j)\Delta f} + \frac{\sin(2\pi(i + j)\Delta fT)}{2\pi(2f_c + (i + j)\Delta f)} \right] = 0. \]

As \(i \) and \(j \) are integer, this is satisfied for \(i \neq j \) if and only if \(2\pi \Delta fT \) is an integer multiple of \(\pi \). Hence, we obtain the minimum value of \(\Delta f \) if \(2\pi \Delta fT = \pi \) which gives \(\Delta f = \frac{1}{2T} \). Note that once \(\Delta f \) is an integer multiple of \(\frac{1}{2T} \), the approximate equality in (*) will be exact.

Proceeding similarly, we will have orthogonality if and only if
\[\mathcal{E} \left[\frac{\sin(2\pi(i - j)\Delta fT + \theta_i - \theta_j)}{2\pi(i - j)\Delta f} + \frac{\sin(2\pi(i + j)\Delta fT + \theta_i + \theta_j)}{2\pi(2f_c + (i + j)\Delta f)} \right] = 0. \]

In this case we see that both parts become zero if and only if \(2\pi \Delta fT \) is an even multiple of \(\pi \), meaning that the smallest \(\Delta f \) is \(\Delta f = \frac{1}{T} \) which is twice the minimum frequency separation needed in the previous part. Hence, the cost of phase uncertainty is a bandwidth expansion by a factor of 2.

The condition for essential orthogonality is that
\[\mathcal{E} \left[\frac{\sin(2\pi(i - j)\Delta fT + \theta_i - \theta_j)}{2\pi(i - j)\Delta f} \right] + \mathcal{E} \left[\frac{\sin(2\pi(2f_c(i + j)\Delta fT + \theta_i + \theta_j))}{2\pi(2f_c + (i + j)\Delta f)} \right] \]
is small compared to the signal’s energy \(\mathcal{E} \). The first term vanishes if \(\Delta f = \frac{1}{T} \). The second term is very small compared to \(\mathcal{E} \) if \(f_cT \gg 1 \).

We have \(m \) signals separated by \(\Delta f \). The approximate bandwidth is \(m\Delta f \). This means bandwidth \(\frac{2^k}{2T} \) without random phase, and bandwidth \(\frac{2^k}{T} \) with random phase. We see that in both cases, \(WT \) is proportional to \(2^k \), i.e. it grows exponentially with \(k \).
Solution 4.

(a) The block diagram is shown below:

(b) Given $A = a$, the distance of signals is $2a\sqrt{\mathcal{E}_b}$, hence

$$P_e(a) = Q\left(a\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right).$$

(c)

$$P_f = \mathbb{E}[P_e(a)] = \int_0^\infty Q\left(a\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right)2ae^{-a^2} da.$$

We integrate by parts, noting that $\int 2ae^{-a^2} da = -e^{-a^2}$:

$$P_f = -Q\left(a\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right)e^{-a^2}\bigg|_0^\infty + \int_0^\infty Q'\left(a\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right)e^{-a^2} da.$$

Taking the derivative of an integral with respect to the lower boundary gives the negative of the value of the integrand evaluated at the lower boundary, i.e.,

$$Q'(x) = -\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Thus, for the derivative of $Q\left(a\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right)$ with respect to a, we can write

$$\frac{d}{da}Q\left(a\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right) = -\frac{1}{\sqrt{2\pi}}e^{-\frac{a^2}{2}}\frac{\mathcal{E}_b}{\sqrt{2\mathcal{E}_b/N_0}}.$$

Plugging this in, we find

$$P_f = \frac{1}{2} - \int_0^\infty \frac{1}{\sqrt{2\pi}}\frac{\mathcal{E}_b}{\sqrt{\frac{\mathcal{E}_b}{N_0} + 1}} e^{-a^2\left(\frac{\mathcal{E}_b}{N_0} + 1\right)} da,$$

which we now reshape to make it an integral over a Gaussian density, as follows:

$$P_f = \frac{1}{2} - \sqrt{\frac{2\mathcal{E}_b}{N_0}} \frac{1}{\sqrt{2\left(\frac{\mathcal{E}_b}{N_0} + 1\right)}} \int_0^\infty \frac{1}{\sqrt{\frac{a^2}{2\left(\frac{\mathcal{E}_b}{N_0} + 1\right)}}} \exp\left(-\frac{a^2}{2\left(\frac{\mathcal{E}_b}{N_0} + 1\right)}\right) da.$$

Now, it is clear that the integral evaluates to one half (since the integral is only over half of the real line), and we find

$$P_f = \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\mathcal{E}_b/N_0}{1 + \mathcal{E}_b/N_0}} = \frac{1}{2} \left(1 - \sqrt{\frac{\mathcal{E}_b/N_0}{1 + \mathcal{E}_b/N_0}}\right).$$
(d) Let $\sigma = \frac{1}{\sqrt{2}}$, then

$$m = \mathbb{E}[A] = \int_0^\infty 2a^2 e^{-a^2} da = 2\sqrt{\pi} \int_0^\infty \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{a^2}{2\sigma^2}} da = \sqrt{\pi} \sigma^2 = \frac{\sqrt{\pi}}{2}.$$

Thus, using the formula from part (b):

$$P_e(m) = Q\left(m \sqrt{\frac{2\epsilon_b}{N_0}}\right) = Q\left(\sqrt{\frac{\pi}{2} \frac{\epsilon_b}{N_0}}\right).$$

For the given example we get

$$\epsilon_b = \frac{2 (Q^{-1}(10^{-5}))^2}{\pi} \approx 10.6 \text{ dB}.$$

For the fading we use the result of part (c) to get

$$\epsilon_b = \frac{(1 - 2 \cdot 10^{-5})^2}{1 - (1 - 2 \cdot 10^{-5})^2} \approx 44 \text{ dB}.$$

The difference is quite significant! It is clear that this behaviour is fundamentally different from the non-fading case.

Solution 5.

(a) In this basis the signal representations are $c_1 = (2, 0, 0, 2)^T$, $c_2 = (0, 2, 2, 0)^T$, $c_3 = (2, 0, 2, 0)^T$, $c_4 = (0, 2, 0, 2)^T$.

(b) The union bound is expressed in terms of the pairwise distances d_{ij} between the signals since

$$P_e(i) \leq \sum_{j \neq i} Q\left(\frac{d_{ij}}{2\sigma}\right)$$

From (a) we observe that $d_{12}^2 = d_{34}^2 = 16$ and $d_{13}^2 = d_{14}^2 = d_{23}^2 = d_{24}^2 = 8$, hence

$$P_e(i) \leq 2Q\left(\frac{2}{\sqrt{N_0}}\right) + Q\left(\frac{2\sqrt{2}}{\sqrt{N_0}}\right)$$

Since $P_e(i)$ does not depend on i, it also bounds the average error probability.

(c) The minimum-energy signal set is obtained by subtracting from $\{w_i(t)\}_{i=1}^4$ the average signal $a(t) = \frac{1}{4} \sum_{i=1}^4 w_i(t) = 1_{[0,4]}(t)$. The resulting signals are shown below.
(d) Note that in the new signal set $\tilde{w}_2(t) = -\tilde{w}_1(t)$ and $\tilde{w}_4(t) = -\tilde{w}_3(t)$. Furthermore the signals $\tilde{w}_1(t)$ and $\tilde{w}_3(t)$ are orthogonal. Thus the new signal space is two-dimensional, and the Gram–Schmidt procedure will produce the orthonormal basis $\tilde{\psi}_1(t) = \frac{1}{2} \tilde{w}_1(t)$ and $\tilde{\psi}_2(t) = \frac{1}{2} \tilde{w}_3(t)$.

(e) In the new basis the signal representations are $\tilde{c}_1 = (2, 0)^T$, $\tilde{c}_2 = (-2, 0)^T$, $\tilde{c}_3 = (0, 2)^T$, $\tilde{c}_4 = (0, -2)^T$. These codewords correspond to those of the 4-QAM constellation (rotated by 45 degrees). The error probability of this set is

$$P_e = 1 - \left[1 - Q \left(\frac{2}{\sqrt{N_0}} \right) \right]^2 = 2Q \left(\frac{2}{\sqrt{N_0}} \right) - Q \left(\frac{2}{\sqrt{N_0}} \right)^2$$

(f) Since translations of a signal set do not change the probability of error, the error probability of the receiver in (b) is equal to that in (e).

Solution 6.

(a) Clearly,

$$\mathcal{E}^C_s(k) = 2^{2k} - 1.$$

(b)

$$a = Q^{-1} \left(\frac{10^{-5}}{2} \right) \approx 4.42.$$

(From the suggested approximation we get $a \approx 4.80.$)

(c) For comparison, see the following table.

<table>
<thead>
<tr>
<th>k</th>
<th>$\mathcal{E}^P_s(k)$</th>
<th>$\mathcal{E}^C_s(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.54</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>97.68</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1660</td>
<td>255</td>
</tr>
</tbody>
</table>
(d) We see that

\[\frac{E_s^C(k + 1)}{E_s^C(k)} = \frac{E_s^P(k + 1)}{E_s^P(k)} = \frac{2^{2(k+1)} - 1}{2^{2k} - 1}, \]

thus

\[\lim_{k \to \infty} \frac{E_s^C(k + 1)}{E_s^C(k)} = \lim_{k \to \infty} \frac{E_s^P(k + 1)}{E_s^P(k)} = 4. \]

(e) If we send one bit per symbol, then coding allows us to significantly reduce the required energy per symbol. For every additional bit per symbol we need to multiply E_s by roughly 4 (exactly 4 asymptotically) with or without coding. So as the number of bits per symbol increases, there is essentially a constant gap (in dB) between the energy per symbol required by (uncoded) PAM and that required by the best possible code.

Notice that to keep the error probability at a constant level, we need to increase E_s/σ^2 exponentially with the number k of bits per symbol. In Example 4.3 in the book we increase it linearly with k (hence the error probability goes to 1).