
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1. Suppose (ai : i = 1, . . . , n) and (bi : i = 1, ..., n) are non-negative real
numbers. Let M =

∑
i max(ai, bi), m =

∑
i min(ai, bi).

a. Show that ∑
i

√
aibi ≤

√
Mm.

[Hint: use Cauchy-Schwartz inequality.]

One can write aibi = min(ai, bi) max(ai, bi) and then apply Cauchy Schwartz inequality
as ∑

i

√
aibi =

∑
i

√
min(ai, bi) max(ai, bi)

≤

√√√√∑
i

√
min(ai, bi)

2∑
j

√
max(aj, bj)

2

=
√
mM

Recall that in a binary hypothesis testing problem with H ∈ {0, 1} and observation Y , the
error probability of the optimal rule is given by

P (error) =
∑
y

min(PH(0)PY |H(y|0), PH(1)PY |H(y|1)).

b. Show that, with Z =
√
PH(0)PH(1)

∑
y

√
PY |H(y|0)PY |H(y|1),

Z2 ≤ P (error).

[Hint: use (a), and upper bound max(ai, bi) by ai + bi.]

A direct derivation using the hint gives

Z2 =

(∑
y

√
PH(0)PY |H(y|0) · PH(1)PY |H(y|1)

)2

≤
∑
y

min(PH(0)PY |H(y|0), PH(1)PY |H(y|1))
∑
y′

max(PH(0)PY |H(y′|0), PH(1)PY |H(y′|1))

≤ P (error)
∑
y′

(PH(0)PY |H(y′|0) + PH(1)PY |H(y′|1))

= P (error)



c. Suppose PH(0) = PH(1) = 1/2, Y ∈ {0, 1} with PY |H(1|0) = PY |H(0|1) = α, α ∈
[0, 1/2]. Evaluate Z and P (error) as function of α.

We can compute

P (error) =
∑
y

min(PH(0)PY |H(y|0), PH(1)PY |H(y|1))

=
1

2

∑
y

min(α, 1− α)

= α

and

Z =
√
PH(0)PH(1)

∑
y

√
PY |H(y|0)PY |H(y|1)

=
1

2

∑
y

√
α(1− α)

=
√
α(1− α)

d. Continuing with (c), sketch Z2/P (error) as a function of α. Show that no bound of
the form ‘λZ2 ≤ P (error)’ with a constant λ > 1 can hold in general.

A small computation shows that Z2/P (error) = (1 − α), Figure 1 shows a sketch
of this It is not possible to say that the bound doesn’t hold at α = 0, indeed in

Figure 1: Z2/P (error as a function of α ∈ [0, 1/2]

that case both terms of the bound are 0. Let λ > 1 and 0 < α < 1 − 1
λ
, then

λZ2 = λα(1− α) > α = P (error).
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Problem 2. Consider a binary hypothesis testing problem on a biased coin. Let H = 0
corresponds to the hypothesis that the coin is biased by 1/2− δ (i.e., P (Head | H = 0) =
1/2−δ), and H = 1 corresponds to the hypothesis that the coin is biased by 1/2+δ, where
0 < δ ≤ 1/2. Assume that both hypotheses have the same prior.

a. Let X1, X2, ... be the outcomes of successive tosses of the coin. Under the optimal
decoding rule, compute P (H 6= Ĥ|X1, X2, . . . , Xn), where Ĥ is the decision.

Let γ = (1/2− δ)/(1/2 + δ), notice that γ ≤ 1. We have

P (H = 0 | X1, . . . , Xn)

P (H = 1|X1, . . . , Xn)
= γ2n0−n

where n0 is the number of heads in X1, . . . , Xn. This implies that,

P (H = 0|X1, . . . , Xn) =
1

1 + γ
−(2n0−n)

P (H = 1|X1, . . . , Xn) =
1

1 + γ
2n0−n .

Under the optimal decoding rule, we always take Ĥ = argmaxi P (H = i|X1, . . . , Xn).
Therefore, we have

P (H 6= Ĥ|X1, . . . , Xn) = min

{
1

1 + γ
−(2n0−n)

,
1

1 + γ
2n0−n

}
=

1

1 + γ−|2n0−n|
.

We can see that the reliability of tester’s decision actually varies depending on the observa-
tion. Now consider a different scheme, namely the tester will flip the coin until it observes
that |(number of head) − (number of tail)| = L. Let us denote the time when it happens
as T .

b. Under the optimal decision rule, show that using this new scheme, P (H 6= Ĥ | T =
t,X1 = x1, . . . , Xt = xt) does not depend on the value of t and x1, . . . , xt.

First of all, we observe that P (T |H = 0) = P (T |H = 1) by symmetry, i.e., P (Head|H =
0) = P (Tail|H = 1). We have

P (H = 0|T = t,X1 = x1, . . . , XT = xt)

P (H = 1|T = t,X1 = x1, . . . , XT = xt)
= γ2n0−t.

where now n0 is the number of head in x1, . . . , xt. By the definition of T , we know
that if T = t then X1x1, . . . , Xt = xt then |2n0 − t| = L. Therefore with similar
argument to (a.), we have

P (H 6= Ĥ|T = t,X1 = x1, . . . , Xt = xt) =
1

1 + γ−L
.

Notice that this error probability does not depend on T = t and X1 = x1, . . . , Xt = xt.

Suppose Z1, Z2, .. are i.i.d., with P (Z1 = −1) = 1/2 − δ, P (Z1 = +1) = 1/2 + δ. For
n = 0, 1, ... let Sn = Z1 + ...+ Zn; note that S0 = 0. Let N be the smallest value of n such
that Sn = 1.
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c. Note that E[N |Z1 = 1] = 1. What is the relationship between E[N |Z1 = −1] and
E[N ] ?

Let Na→b to be the first n such that Sn = b if S0 = a. We have E[N |Z1 = −1] =
1 + N−1→0 + N0→1. However, we can observe that N−1→0 = N0→1 , and N0→1 = N
by definition. Hence E[N |Z1 = −1] = 1 + 2E[N ].

d. Show that E[N ] = 1/2δ.

We have,

E[N ] = E[N |Z1 = 1]P (Z1 = 1) + E[N |Z1 = −1]P (Z1 = −1)

=

(
1

2
+ δ

)
+

(
1

2
− δ
)

(1 + 2E[N ])

= 1 + E[N ]− 2δE[N ].

Solving for E[N ] gives us E[N ] = 1/2δ.

For ` = 1, 2, ... let N` denote the smallest value of n such that Sn = `.

e. Show that E[N`] = `/2δ.

[Hint: use d.]

Notice that N` = N0→1 +N1→2 + · · ·+N(`−1)→`. So we have E[N`] = `E[n] = `/2δ.

f. Show that E[T |H = 0] = E[T |H = 1] ≤ L/2δ.

[Hint: express T in terms of NL and N−L.]

We have E[T |H = 0] = E[T |H = 1] by symmety. Take Sn = 2n0 − n, i.e., it
is the running sum of the difference between the number of heads and tails that we
observed so far. Notice that T can also be written as min{NL, N−L}. Therefore we
have T ≤ NL, taking the expectation gives us E[T ] ≤ E[NL] = L/2δ.

Addendum
Considering its popularity, we have to address this specific form of false argument for point
(d.). The argument starts by observing a true statement that E[Sn|N = n] = 1. However,
it continues by using a false equality, E[Sn|N = n] = nE[Z]. We can see that it is false
simply by taking n = 1, so we have, E[S1|N = 1] = 1 6= E[Z].

However, it is true that E[NE[Z]] = 1. We can prove it by studying a different random
variable Z̃i = Zi −E[Z] and S̃n =

∑n
i=1 Z̃i. Notice that this implies that E[S̃n+1|S̃n] = S̃n.

Think of S̃N as a payoff of a “fair gamble” if we chose to keep gambling until we observe
Sn = 1. “Fair gamble” here means that the expectation of the payoff that you get is equal to
your initial money. Intuitively, we can see that it implies E[S̃N ] = E[S̃0], i.e., you cannot
get advantage on a fair gamble no matter how smart you chose to stop.

This implies that E[S̃N ] = 0. However we also have E[S̃N ] = E[SN −NE[Z]] = 0. Which
implies that E[NE[Z]] = E[SN ] = 1.

A more formal argument requires a technical condition whereas we have to ensure that SN
“must always” hit 1, which holds for our case. However verifying this condition requires
tools beyond the scope of this course, and you can study it on the Advanced Probability
class.
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Problem 3. Suppose Y = [Y1, ..., Yn]T is a real random vector with zero mean (i.e., E[Yi] =
0 for all i) and covariance matrix C (i.e., Cij = E[YiYj]).

a. Show that for any a = [a1, ..., an]T , E[(
∑

i aiYi)
2] = aTCa. Conclude that C is a

positive semi-definite matrix. [Recall: a matrix A is said to be positive semi-definite
if for all vectors x, xTAx ≥ 0. A is said to be positive definite if the equality holds
only if x = 0.]

Using linearity of expectation we get

0 ≤ E

(∑
i

aiYi

)2


= E

[∑
i

∑
j

aiYiajYj

]
=
∑
i

∑
j

aiE [YiYj] aj

=
∑
i

∑
j

aiCijaj

= aTCa

which shows that C is positive semi definite.

b. Suppose we take a linear transform of Y to obtain a vector X, i.e., for a matrix
A = [aij], we let Xi :=

∑
j aijYj. Show that E[X] = 0, and the covariance matrix of

X is given by ACAT .

We again use linearity of expectation

E[X] = E[AY ]

= A · E[Y ]

= 0

E[XXT ] = E[AY Y TAT ]

= AE[Y Y T ]AT

= ACAT

In the rest of the problem, suppose C is positive definite. Consider the following iterative
procedure to define the random vector Z = [Z1, ..., Zn]T as a function of Y .

W1 = Y1 Z1 =
W1√
E[W 2

1 ]

W2 = Y2 − E[Z1Y2]Z1 Z2 =
W2√
E[W 2

2 ]

W3 = Y3 − E[Z1Y3]Z1 − E[Z2Y3]Z2 Z3 =
W3√
E[W 2

3 ]
...

...

Wi = Yi −
i−1∑
j=1

E[ZjYi]Zj Zi =
Wi√
E[W 2

i ]
.
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c. 1. Show that for each i, E[W 2
i ] > 0, so the division step in the definition of Zi is

always well-defined.

If we unwrap the definition of Wi, we can express it as a a linear combination of
the elements Yj for j ≤ i, for instance Wi =

∑i
j=1 bjYj with bi = 1. Writing b =

[b1, . . . , bi, 0, . . . , 0]T we get that Wi = bTY = Y T b and E[W 2
i ] = E[bTY Y T b] =

bTCb > 0 since C is positive definite and b 6= 0.

2. Show that E[Z1W2] = 0, and thus E[Z1Z2] = 0.

Using linearity of expectation we get

E[Z1W2] = E[Z1(Y2 − E[Z1Y2]Z1)]

= E[Z1Y2]− E[E[Z1Y2]Z
2
1 ]

= E[Z1Y2]− E[Z1Y2]E[Z2
1 ]

= E[Z1Y2]

(
1− E

[
W 2

1

E[W 2
1 ]

])
= E[Z1Y2]

(
1− E[W 2

1 ]

E[W 2
1 ]

)
= 0

and E[Z1Z2] = 1√
E[W 2

2 ]
E[Z1W2] = 0.

3. Show that E[ZjWi] = 0 and E[ZjZi] = 0 for all j < i.

We prove this by strong induction on i. The initialisation is the subquestion c.2.
Suppose that and for all j < k < i+ 1 we have E[ZjZk] = 0, let j < i+ 1, then

E[ZjWi+1] = E

[
Zj

(
Yi+1 −

i∑
k=1

E[ZkYi+1]Zk

)]

= E[ZjYi+1]−
i∑

k=1

E[ZkYi+1]E[ZjZk]

= E[ZjYi+1]− E[ZjYi+1]E[ZjZj]

= 0

Which implies E[ZjZi+1] = 1√
1
√

E[W 2
i+1]

E[ZjWi+1] = 0 and finishes the proof.

d. What is the covariance matrix of Z ?

For any i 6= j, we have E[ZiZi] =
E[W 2

i ]

E[W 2
i ]

= 1 and E[ZiZj] = 0 and so the covariance

matrix of Z is the identity matrix. This means that the elements of Z are uncorrelated
and have unit variance.

e. The procedure to obtain Z as a function of Y is a linear transformation, let A rep-
resent that transformation, i.e., Z = AY . What properties does the matrix A have?
(e.g., does it have some sort of triangularity? what about its diagonal entries? is it
invertible or not?)

The matrix A is lower triangular, it’s diagonal entries are Ai,i = 1√
E[W 2

i ]
> 0 and so

A is invertible.
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Problem 4. Consider a binary hypothesis problem with hypothesis H ∈ {0, 1} and obser-
vation Y . Let T = t(Y ) be a function of the observation.

a. Suppose that for each y and a specific PH(0), PH(1), the MAP estimator HMAP(y) of
H from the observation y can be determined from t(y). Can we conclude that T is a
sufficient statistic?

No, this was shown in Homework 4, Problem 2.

b. Suppose further that for every a priori distribution PH(0), PH(1) on the hypothesis
H, HMAP(y) can be computed from t(y). Show that pY |H(y|1)/pY |H(y|0) can be
determined from t(y).

For every value of pH(0) ∈ [0, 1] we have a mapping gpH(0) : t(y) → HMAP(y) such
that gpH(0)(t(y)) = 0 if pY |H(y|1)/pY |H(y|0) ≤ pH(0)/(1− pH(0)). this means that

pY |H(y|1)/pY |H(y|0) = inf
gp(t(y))=0

p

1− p
= g(t(y))

c. Continuing with (b), can we conclude that T is a sufficient statistic?

Let h(y) = pX|H(y|0), let g0(t) = 1 and g1(t) = g(t) then

pY |H(y|i) = h(y)gi(t(y))

the conclusion follows by Fisher Neyman’s factorisation theorem.

Consider now a m-ary hypotheses problem; m ≥ 2, H ∈ {0, . . . ,m− 1}.

d. Upon observing Y = y, suppose we are also told that H is either i or j, (with
0 ≤ i < j < m). Find the decision rule that minimizes the probability of error; call
this rule Hopt,i,j(y).

The optimal decision can be implemented by setting Hopt,i,j(y) = i if pY |H(y|i)/pY |H(y|j) ≥
pH(j)/pH(i) and j otherwise.

e. Suppose that for every a priori distribution PH(0), . . . , PH(m − 1), and each i <
j, Hopt,i,j(y) can be determined from t(y). Can we conclude that T is a sufficient
statistic?

We can consider only the distribution pH that take support only on two element
i 6= j, i.e. pH(k) = 0 if k /∈ {i, j}. From question b, this means we can de-
termine pY |H(y|i)/pY |H(y|j) from t for all i, j. Let gi(t) be such that gi(t(y)) =
pY |H(y|i)/pY |H(y|0) for all i and let h(y) = pY |H(y|0), then

pY |H(y|i) = h(y)gi(t(y))

and so T is a sufficient statistic.

Addendum
We see that are 3 equivalent methods of proving that a statistics t(y) is a sufficient statis-
tic. First we can show that it fulfils Neyman-Fisher factorization; Secondly, we can show
that the likelihood ratio can be computed from t(y); Or we can show that it can be used to
compute the optimal MAP decision for every prior distribution.

It is really important to show that the MAP rule can be computed for every prior distribu-
tion, Just proving that MAP can be computed for some prior is not enough to show that it
is a sufficient statistics. This point has tripped many students in problem (e.).
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