(Fast) polytope intersection Lecture 17

Outline

(1) Problem définition

(2) Why does it make sense!

3) relaxed formulation and solving le 2) ervor analysis

(L1) error analysis

Problem formulation

Given two polytopes Kijkz where we know how to solve fast

min c^T x

and win c^T x

5.+ xeK2 + ceRⁿ

we want to solve min crx 5.4 XCKINKZ

(2) why doer it make seuse?
Problem
Input: a graph G=(V,E), a weight
function w: E-1774, and
a partition of the edger
in différent color sets.
F = C,U(20UCK, Cing = \$
Output: a minimum weight colorful spanning tree
Output: a minimum weget
each edge of
the tree har to be of a different
colos.

The problem can be described as the minimization of a linear function over the intersection of two polytopes =>

spauung tree
min Zwexe St. Zxe=n-1 Solvande
C EC
Exesision # 5 GV (E(5) is the set of edges with both
05 xe 51 teeE endpoints at 5
colorful graph
min Swexe # of colors
min Zwexe eff st Zxe=1 fielk1 = greedy ecc; works
0 < Xe < 1 + e F E
minimum colorful spanning tree
weight $\leq x_e = n-1$
min Swexe 5.+ EEE Sxc=151-1 + 5 CV
weight $\sum_{c \in E} x_c = n-1$ min $\sum_{e \in E} x_e = 1$ $\sum_{c \in E(e)} x_c = 1$ $\sum_{e \in E(e)} x_e = 1$
Rinear Function 5 xo 51 Fielks
ecc; ecc;
since both polytopes can be described
by a matroid =>
the intersection has integral solutions

The naive approach to solve the colorful seauning tree problem woold be to use directly the laster cutting plane method. This will lead to a slow algorithm, as the separation oracle for the spanning tree problem alone, require 5 slving a min-cut max-Plou problem. Consequently each Heration it rent cortly. Moreover we do not use at all le fact that minimizing a linear function over each one of Repolytopes separately is easy and fast,

(3) relaxed formulation and solving the dual. Problem définition min CC/x7 min < c, x >5.4 X C K, N K2 5. + x e K | is eary and $min < c \times 7$ we will not e min 2 cixi 5.4 XEK2 15 ea 74. st xcKi

optimization

overle

subvostine Roadmap we will ultimately use a cutting plane method to solve the problem. We will overcome the costy separation Dracle compution by transforming the problem such that: Deparation oracle peroues trivial Drabgradient oracle is comented using the optimization ovacle

2) Claim au optimization ovaile for is a subtradient oracle for fice) = max cix broot let x = avg max ct x $f(d) = \max_{x \in K} d^{x} > d^{x} =$ = cx+ + (xx) (d-c)= = f(c) + (x)) (d-c) Jubgredreut defruition.

max c² x

xe Kinkz

assuming that

max lixliz < M

xeKi, yekz

max lixliz < M

xeKi

Lax + Lay - 2 llx-yll2

forcing x = y

The nishing

eurough

we will use instead

max fa(x,y)=== cx+==c7y - == 11x-y112, -== 11x112-== 11y112
xck, yck2

these terms
will belp
recover an
almost optimum
solution.

good proxy Cemun

for 77.1 leve is a nuique minimizer to
le problem max falx,y), let let be (x,y)
xex,yex,

aud

2 wax 2xxxf(xxiyx) + m2
xckinre

 $3 ||\chi_{\lambda} - \chi_{\lambda}||_{2}^{2} \leq 6u^{2}$

proot

unique maximizer (x), y) loccanse of

L-strong concavity.

2) let xx ∈ avgmax c¹ x lle 1
xekinki

 $f_{3}(x_{3},y_{3}) > f_{3}(x_{3},x_{3}) = c_{3}(x_{3}^{*} - |x_{3}^{*}|^{2}) > c_{3}(x_{3}^{*} - |x_{3}^{*}|^{2}) > c_{3}(x_{3}^{*} - |x_{3}^{*}|^{2}) > c_{3}(x_{3}^{*} - |x_{3}^{*}|^{2})$

3
$$f_{1}(x_{1},y_{1}) \leq \frac{1}{2} ||c||_{2}||x_{1}||_{2} + \frac{1}{2} ||c||_{2}||y_{2}||_{2} - \frac{1}{2} ||x_{2} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{2} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{2} - y_{3}||_{2}^{2} =$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{2} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{2} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} \leq \frac{1}{2} ||x_{3} - y_{3}||_{2}^{2} = 7$$

$$= 7 ||x_{3} - y_{3}||_{2}^{2} = 7 ||x_{3} - y_{3}||_{2}$$

Dual transformation

$$L || \times ||^2 = max \left(\frac{\theta^7 \times - \frac{1}{2} || \theta ||_2^2}{\theta \cdot || \theta || \leq u} \right)$$
(5) Evice $|| \times || \leq u$

$$f_{3}(x_{1}y) = \frac{1}{2}c^{7}x + \frac{1}{2}c^{7}y$$

$$+ \frac{1}{3}\sum_{i=1}^{m_{1}y_{i}} \frac{1}{2}||\theta_{i}||^{2} - \theta_{i}^{7}(x_{1}y_{1})||\theta_{i}||_{2} + \frac{1}{3}\sum_{i=1}^{m_{1}y_{i}} \frac{1}{2}||\theta_{i}||^{2} - \theta_{i}^{7}x + \frac{1}{3}\sum_{i=1}^{m_{1}y_{i}} \frac{1}{2}||\theta_{i}||^{2} + \theta_{i}^{7}x + \frac{1}{3}\sum_{i=1}^{m_{1}y_{i}} \frac{1}{2}||\theta_{i}||^{2} +$$

=7 max
$$f_{1}(x,y) =$$
 $x \in K_{1}, y \in K_{2}$

$$= \max_{x \in \mathcal{R}_1} \min_{0 \in \mathbb{N}} x$$

$$y \in \mathcal{R}_2$$

$$y \in \mathcal{R}_2$$

$$y \in \mathcal{R}_2$$

$$y \in \mathcal{R}_2$$

$$y \in \mathcal{R}_3$$

$$y \in \mathcal{R}_2$$

$$y \in \mathcal{R}_3$$

$$y \in \mathcal{R}_3$$

$$y \in \mathcal{R}_3$$

$$\left(\frac{c}{2}-70,-\frac{1}{2}0\right)^{7}$$

$$(\frac{1}{2} - \frac{1}{3}\theta_3)^7 y$$

Observation

For x 17 fixed

OLO3 Will Gelp no

recorer xy and gy

that's why me needed

tle terms - 1 11×112 and - 1 11×112

Max min
$$(2-701-102)^{7}$$
 x x cki $0_{11}0_{21}0_{3}$ $(2-701-102)^{7}$ x y cki $10_{11}11 \le 11$ $(2-701-102)^{7}$ y $(2-701-102)^{7}$ y $(2-701-102)^{7}$ y $(2-701-102)^{7}$ y $(2-701-102)^{7}$ $(2-701-102)^{$

Scouls Reoven

Kinkz clored

>+ 110:11, < 1 cover

9,,0,0,

$$= \sum_{\substack{0 | 10 | 2 | 03 \\ 10 | 01 | \leq M \\ 4 | 2 = 1/2/3}} Q_{3} (0_{1}, 0_{2}, 0_{3})$$

separation oracle of ha

fust check if 110/1154, 11021154 110311 511

optimization oracle of hy

×*+y*+カロノイカロレナカロン

 $x^* = avy \max_{x \in K_1} \left(\frac{1}{2} - \frac{1}{3} \theta_1 - \frac{1}{3} \theta_1 \right) x = x$ optimization over $\frac{1}{3}$

 $y^* = avg max \left(\frac{c}{2} - \eta \theta_1 - 1\theta_3\right) y^{-2}$ from the optimization

=> we can use a cutting plane melhod to find D, Oz, Oz 5.+

an (0,02,03) 5 E G7 (0,102,03) ¥ 6 = 1,2,3

Dt BL BB ~ avywin ...

Ervor analysis we know that $\chi_{\eta} = \theta_z^*$ and we Jn = 0 37 want to prove that $\theta_2 \sim \theta_2^+$, $\theta_3 \sim \theta_3^+$ (1(0,0,0) < (10,0) + E $\frac{1}{2} > \frac{1}{2} + \frac{1}{2} = \frac{1}$ by 1/2-strongly =27.8 courex $\frac{Q_{2}^{*} = \gamma_{3}}{Q_{3}^{*} = y_{3}} > ||Q_{2} - \chi_{3}||_{2}^{2} + ||Q_{3} - y_{3}||_{2}^{2} \leq 2.7.5$ a2+627/2 (0+0)2 (1 ×7-47/1 2 >/ 1102-0311-2 127/2 => | || xx || > || 02 || - \(\frac{12}{27}\) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\f

119/112 > 1103112- 1278

Now we are ready to bound

$$f_{1}(0_{2},0_{3}) - f_{1}(x_{1},y_{1}) =$$

$$= \frac{1}{2} < C_{1}0_{2} - x_{1}7 + \frac{1}{2} < C_{1}0_{3} - y_{1}7$$

$$-\frac{1}{2} \left(||0_{1}^{2}0_{3}||_{2}^{2} - ||x_{1}||_{2}^{2} \right)$$

$$-\frac{1}{2} \left(||0_{1}^{2}||_{2}^{2} - ||y_{1}||_{2}^{2} \right)$$

$$-\frac{1}{2} \left(||0_{3}||_{2}^{2} - ||y_{1}||_{2}^{2} \right)$$

$$-\frac{1}{2} \left(||0_{3}||_{2}^{2} - ||y_{1}||_{2}^{2} \right)$$

$$-\frac{1}{2} \left(||0_{3}||_{2}^{2} - ||y_{1}||_{2}^{2} \right)$$

$$-\frac{1}{2} \left(||x_{1}||_{2}^{2} - ||y_{1}||_{2}^{2} \right)$$

$$-\frac{1}{2} \left(||x_{1}||_{2$$

$$f_{1}(0_{2},0_{3}) - f_{1}(x_{1},y_{1}) \ge -202271\xi - 107^{2}\xi$$

wax $Z \times 1(x_{1},y_{1}) + u^{2}$

xeking as solution $J = 0_{2}+0_{3}$ we get

max $Z \times 1(x_{1},y_{1}) + u^{2}$
 $\leq f_{1}(0_{2},0_{3}) + u^{2} + 20271\xi + 107^{2}\xi$
 $\leq (0_{2},0_{3}) + u^{2} + 20271\xi + 107^{2}\xi$

and $113-x_{1}112+11\xi-y_{1}112=41^{2}2\xi$

 $\left(u r n g \left(\frac{10}{2} - x_{1} \left(\frac{1}{2} + 10 - y_{1} \right) \right)^{2} \leq 2 \cdot 7 \cdot \epsilon \right)$

All together

$$7 = 410 \mu^2$$
 $\epsilon = \frac{5^3}{10^3 \mu^6}$ then

max $c^7 \times \leq c^7 + 5$
 $\times \epsilon k_1 N_2$

and $||g - x_1||_2 + ||g - y_1||_2 \leq 5$
 $= > complexity = \frac{5^3}{10^3 \mu^6}$ or clare lexity

 $0 (n(001 k_1) + 001 k_2) log n M/5$
 $+ n^3 polylog(n M)$

Jee, Sidford, Woug