decture 12
Approximate
Caratheodony
Theorem
Noing Mirror Descent

Carafleodory's fleorem (exactresion)

Let $u \in \mathbb{R}^n$ be a point which lies in the convex hull of a set of points which the points which the convex hull define the convex hull

Then u can be written as a convey combination of at most n+1 points of avii-(vm).

7 let is $M = \sum_{i=1}^{m} \gamma_i v_i$, $\gamma_i \gamma_i o \leq \gamma_i = 1$ #uou zero $\gamma_i \leq n+1$

Note let n 22 m

The Theorem is tight. That is why the natural question to ask is if an nor less points if we permit an e-error.

for any lp-norm will pr2,
courex bull cour (1/1/1/2/-//ml) 5 22
will livilp < 1 (vie Bp fie[m]) and
point ue cour (1/1,1/m²) pleve exists
üst 11u-üllp z E weere ü is i'u
lle courex bull of at most 4P
points of driver. Vul. That means
points of 1/1/2/11/VM That means The court of the permitation of the set 1/1/1/VM The court of 1/1/11/VM The court of the permitation of the set 1/1/1/VM The court of the permitation of the set 1/1/1/VM The court of 1/1/11/VM The court of the permitation of the set 1/1/1/VM The court of the permitation of the set 1/1/1/VM The court of the permitation of the set 1/1/1/VM The court of 1/1/1/VM The court of the set 1/1/VM The court of the

Approximate Cavalleodory's Therom

Observations

1) if maxilvillp < d then the # of points < 4 ph

2) AP is independent of led impusion nof the space.

3) the original proof of the theorem is probabilistic and non-constructive.

Optimization formulation

V = [1 /2 ... Vm] × e 1 m simple x

we want to solve min 11/x-ulp

3+ X is sparse

Problem: we do not know how to model
the sparsity requirement

Idea: solve the nuconstrained problem iteratively using gradient descent/ mirror descent and hope that the solution is sparse.

Ilus idea will fail since the gradient update may not be sparse

me need to formulate the problem differently.

Reformulation using Sion's minimax theorem
Remember let le dual norm of 11.11
15 11.11 q where $\frac{1}{p} + \frac{1}{q} = 1$. From the
dual norm définition me get that
11 /x-ullp=max of <y, x-u=""> 1 11y11q=1 }=</y,>
= max / < y, Vx-u> / y ∈ By (
=> min Vx-ulp = win max <y, td="" vx-ui="" xesu="" yesu="" yesu<=""></y,>
Sioner Max Min < y /Vx-u> = winnex yebu xelu
$= \max_{y \in B_q^m} \{ \max_{x \in \Delta^m} \langle y, u - V \times \rangle \} =$
= - min max < y, u-Vx? =
$= - m \cdot n f(y)$ $y \in B_q^m$

Now the nucoustrained problem is equivalent to solving. / (4) = max < y, u-vx> min (y) ニくな、ルーノメット XEAm A-1xy, det15 calculate some (sub) gradients: Xy = avgmax -evty, x > = xy is le vector of all revos except fou a 1 at the coordive abuse notation even if it is a subgradient note c = argmax - 474 Iluis guy (which is a dual 17fry) = u-1xy = centilicate of Proof = u - u; the new optimization

for un latin u)

f(2) 7, f(y) + < u-V×y, 2-y 7 => 2

2 => f(2)7, f(y) - eu-vx3, y7 + eu-vx3, 27 > => max < Z, u-Vx>>, < Z, u-Vx1> 個 x ∈ 1^m

n = \(\a \mathcal{D} \phi \(\times^* \cdot \a \) \\
\frac{2 \sqrt{7}}{} U.D Reovem Do(x1) > a 11x-4112 f is d-directurate wirt 11.11 p then with an appropriate stepsizé we get 1 S(27f(y+)/y+-y) = 2 [Po(x*, ro) & xyebq V ru lle original statement be cause of the first order condition and locanse A* 12 aminimiser 12<7f(y+1,y+-y>= +2<u-via,y+-y> $=\pm \sum \{(u-v_{i(t)},y_{t})-(u-v_{i(t)},y_{t})\}=$ > - 1 = < L-V(11) / SINCE F19170 (fry) = max < Jru- 1x> >0 100 Caute & x 5.4 U= 1x So jusing mirror dercent me can get a bound of the form - H S < u-viri) y > = >> > > > > > > > > > > + y < Bq =72y, 12vin -u> < > 7ye Bq by definition of the dual norm

| 1 = 2vi(+) - vi| = 1 | (+1=1) | (+05+ a) reminder) Now it remains to calculate lle higschitz pavonneter 2 and final a function y st Dp(xy) >- ally-yll2 1) we have 117f(y)= 11u-Virillp = 3 Hullp + HV willp = 2 (since VieB9 and U beloug) to le couvex A = 2 lull of

2) For 15952 , 4(g) = 119119 , ycB9 (why should me try this function? well. In the case of the classic lz-novu we have $\psi(y) = \frac{1}{2}||y||_2^2 = \frac{1}{2}||y||_2^2 = \frac{1}{2}||x-y||_2^2$ and now we need a loosud of the Lorn Dp (x,y) >, a 11x-y112 for le douain Bque lave Derry) > 9-1 11x-y112 and Dy(y*,0) < max Pq(y,0) < 1/2 (for q=2) 50 Do(xy) 2 ally-yll2 , a = 9-1 = サード アーバーアートリー So to get E-close we need = 1

 $\frac{1}{a} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{0(P/e^2)}{1 + evations}$ Which is also the # of V_{ii} that we need to use A