Lecture 11

Mirror descent

- Projected gradient descent

- Mirror descent

- UWW as a special case of Uirror descent

Projected gradient descent

we mont to solve the following optimization problem:

min fry xe0 > convex set

SD Xt+1 e Xt-Nt \(\frac{7}{4}\) Problem: We way end outside C!!!

Projected GD

Xt+112 = Xt - Nt V France

Xt+1 = Mc (Xt+112)

function 11 Coperator, using as a distruce function 11.112 -> Mc(x) = avg min 11x-y112

Quertion: Is it always good to project? (in other words, do me get closer to the optimal point xª byprojecting in () Answer: $(x_{t+1/2} - x_{t+1}) (x^{*} - x_{t+1}) \leq 0$ yes!!! $\frac{\chi_{+1}}{\chi_{+1}} = \frac{\chi_{+1}}{\chi_{+1}} \left(\chi - \Pi(\chi) \right) \left(\chi - \Pi(\chi) \right) \leq 0$ $\chi_{+1} = \chi_{+1} = 0$ $\chi_{+1} = \chi_{$ (remember lent C 17 couver) $= > || x_{t+1/2} - x^* ||^2 > || x_{t+1/2} - x_{t+1} ||^2 + || x^* - x_{t+1} ||^2$ => ||X++1/2-X*||2 > ||X++1-X*||2 Important observation: (in order to the Projected GD update vorvill 20 de rient] rule X++1/2 <- X+-N+ (2 (X+) Xt1 = M((X++112) = argmin 11x- x++112112 is equivalent to a regularized updating rule X = and win } t(x+) + < xt(x+) / x-x+2 + T ||x-x+||_+

argmin of [(x)+< \(\frac{1}{1}(x+1)/\times-\times+1)^2 \rightarrow \(\frac{2}{1} \rightarrow \frac{2}{1} \rightarrow \frac{2}{ = argmin $\frac{1}{2} < \frac{7}{5} + \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{$ = argmin of NF < X f(xx), x> + 1 ||x-xx||2 } and argmin $|| x - x_{t+1/2}||^2 = argmin || x - x_t + n_t \sqrt{f(x_t)}||^2 = x_t$ = avgmin 2 (= 11x-x+1)2+=11n+7(f(x+))12+<x-4, n+7f(x+))

= argmin { nt < Vf(xt), x> + 1 ||x-xt||2}

we proceed by analysing the convergence
speed of Projected Gradient Descent
when applied to dipschitz, couvex functions
Theorem min fry L-dieschitz => Ifry-fry) = dillyyllz xeC => 11xfxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
min (fix) 1-4:62 crits => 1-(x)-fix) = 24-11x-21/5
=> 117fx>112 =d
the projected G.D. wille stepsize
$ \eta = \frac{11\times 0-\chi^*11}{11\times 10^{-1}} =$
t (= x+1)- (xx) < 11x0-x41
aud
Helis +clis +clis
proof

proof 11×++1-×* 112 (Drefection) = 11 xt-v2[(xt) -xx112 (of x+1/2) = $||\chi_{t-}\chi_{*}||_{5} + v_{5}||\chi_{t}(x_{5})||_{5} - 5v_{5}||_{5}$ convexity of f t(x+)>t(x+)+ < 1(x+) x+-x+> $\leq 11 \times (- \times 11^2 + n^2 ||\nabla f(x)||^2 + 2n (f(x^2) - f(x^2))$ Ladding Cort=0 to T 2n=2(f(xx)-f(xx))+||xx-xx||2 ||xo-xx||2+n2=1|7f(xx)|2 $= > \frac{1}{||x^{1+1}-x^{1}||^{2}} > 0 + = 0 + ||x^{1}-x^{1}||^{2} > 0 + ||x^{1}-x^{1}||^{2} > 0 + ||x^{1}-x^{1}||^{2} > 0 + ||x^{1}-x^{1}||^{2} > 0$ 1/2 (xxx) 2 = 2 = 2 (xxx) - f(xxx) \(\frac{1}{2} \tau \frac{2}{2} \tau \f by noting that minf(xx) = 1 = f(xx) telt] f(+2x+) = + 5 f(xt) (fen sen) and setting n = 11xo-xx112/2. IT we get the theorem

Observations

(1) Thus after Titerations the error is

11 xo-x*112.d 70 get an error

of ε we need $T = O\left(\frac{\|x_0 - x^*\|_2^2}{\varepsilon^2}\right)$ iterations.

(2) we can also me avarrable step

size $n_t = \frac{\|x_0 - x^{\mu}\|_2}{\|x_0 - x^{\mu}\|_2}$ and get that

minf(xx)-f(xx) < ||xo-xx||² + 6.5 xx = ||xo-xx||²

= 0 (11xo-x*112 d. logT)

(3) We still get that

1 = (+(xx) - +(xx)) = 11xo-x*1/5-9

neve le function & changes every time (ouline setting) What happens if we do not have 11 very " neeful information w.r.t

The Cz-norm of the gradient?

For example we know that

117 from 00 11 but only that 117 from 25 Tr.

Mirror descent

Overview of what we will do :

- (1) We will define Bregman divergence which "should be viewed" as a distance function
- (2) We will redefine the projected G.D apolete unde to use the Bregman divergence as the projection Fraction (instead of 11.112)
- B) choosing appropriate Bregman divergentes une get bounds unt ober norms than

Bregman Divergence

Let $\psi: C-7R$ be a strictly convex function continuously differentiable, over a closed convex set C. Then we define the Grequent divergence as $D\psi(x,y):=\psi(x)-\psi(y)-\langle \nabla\psi(y),x-y\rangle$

observations and examples

- O Do(xig) measures bon good is the ext g.
- 3 Dalxis) > 0 of xise (connex)
- 3 Da(xiA) = 0 ift x=A (bill strictly)
- (R) PY (x) PY = (Bx) POXX (B)

(1) Let $\psi(x) = \sum_{i=1}^{n} x_i \log x_i$, $x \in \mathcal{A}^n$ 5 imelex $D_{\varphi}(xy) = \sum x; \log x; - \sum y; \log y;$ -24+logy|x-y>= = 2x;logx;-2y;logy;-2(x-y)- S (xi-yi) legy: = = 5xilogxi - 5xilogyi = = 2x; logxiy; = xh(x114) Projections with Bregman divergence) Let $\Pi(x) = avgmin D\varphi(y,x)$ be the projection operation using Bregman

divergence of y.

• Γι(x) is uniquely determined because

g(y) = Dψ(y,x) = ψ(y) - φ(x) - «Τφ(x),y-x>

is strictly convex, and C is a closed

county sel = nuique minimizer

• (Τω(x) - Σω(Γ(x)), y-Γ(x) > = +x, +y ∈ C

- LTφ(x) - Tφ(π(x)), y-π(x) > 30 +x, +yec

Proof

π(x) 15 a minimizer of Dφ(·,x) in C=>

=>< \quad \q

• $D\varphi(y,\eta(x)) + D\varphi(\eta(x),x) \leq D\varphi(y,x)$

fx, fyec

 $= > D_{\varphi}(x_*,x) > D_{\varphi}(x_*,u(x)) x_* \in C$

In order to construct Mirror doscent
we will slightly change the update
rule of projected G.D.
\mathcal{P}_{i} G \mathcal{D}_{i}
X++1 = argmin of (x+) +
1
XP+1 = and www) {(x+) + < 1/2(x+) \x-x+> + T DA(x+x+) }
which is equivalent to
$X_{t+\frac{1}{2}} = argmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle D \varphi(x_t x_t) \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle + \langle \nabla f(x_t x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$ $= \alpha rgmindf(x_t) + \langle \nabla f(x_t) x - x_t \rangle$
Xt+1 = argmin Pp (x,x++1)2) xec rection 5+ep
proof ===================================

$$X_{t+1} = \operatorname{argmin} \left\{ f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + L D \varphi(x_t x_t) \right\}$$

$$X_{t+1} = \operatorname{argmin} \left\{ \varphi(x_t) + \langle \nabla f(x_t), x - x_t \rangle + L D \varphi(x_t x_t) \right\}$$

the first step is unconstrained, therefore
the gradient should be equal to 0 =>

=>
$$7 + 1 = 0 = (1+x) + 1 = 0 = 1$$

$$=> T \varphi(x) = \nabla \varphi(x) - n_{+} T f(x_{+})$$

$$\Rightarrow \nabla \psi(\chi_{t+v_2}) = \nabla \psi(\chi_t) - v_+ \nabla f(\chi_t)$$

=>
$$\chi_{++1/2} = (\nabla \varphi)^{-1} (\nabla \varphi (\chi_{+}) - n_{+} \nabla f (\chi_{+}))$$

$$x_{t+1} = avgmin D\psi(x/x_{t+1/2}) = = >$$

=argmin { \(\psi(\pi) - \psi(\pi_{+1/2}) - < \bar{V}\pi_{+\frac{1}{2}} \) \(\psi \) = argmin) $\psi(x)$ - $\chi \nabla \psi(x_{++1/2})/x > = xeC$ $= avgmin \left(\psi(x) = \zeta \nabla \psi(x_{+}) - n_{+} \nabla f(x_{+}) \times \chi \right)$ Mirror descent $\chi_{+112} = (\nabla \varphi)^{-1} \left(\nabla \varphi (\chi_{+}) - \chi_{+} \nabla \varphi (\chi_{+}) \right)$ XF+1 = ardwin Dh(x/x++115) Theorem (convergence speed) DQ(x,y) > allx-Alls < arlowing norm fis d-diprehitz wr. + 11.11* then UD with Slepsize n= Vai Dyrx*1xon satisfies も(キマメト)-ト(メメ)この人(メメン)・ケ min f(xt) - f(xy) <

proof algorille uleve ne As in the P.60 groved let 11x+1-x*113=11x+-x*113+5N (t(xx)-t(xt))+N311/1/2/1/3 leve it suffice to prove that Da(x, x+1) = Da(x, x+) + u (t(x2-t(x2) + 1/2 ||xt(x)|)* (then by summing for t=0,..., The get a teles copic sum etceta) we start by taking the generalized law of cosines: Da(xx1x+1)+Da(xx+1)xf)=ba(xxxf)+< Da(x+1-Da(x+1)/xx-x+1) X+1= Mc(X+1112) we Com Morcover since < \(\frac{\ by setting y=x* and nsing the law of coring

we get =>

 $D_{\varphi}(x_{1}^{*}x_{1}) < D_{\varphi}(x_{1}^{*}x_{1}) + n + (f(x_{*}) - f(x_{1}) + n + (f(x_{*}) - x_{1}) < - x_{1}) < f(x_{1}) + n + (f(x_{*}) - f(x_{1})) + n + (f(x_{*}) - x_{1}) < - x_{1}) < - x_{1}$

f 15 d- hipsolvitz w.v.t norm 11.11 word may not be Ale le-norm !!!