Lecture 7 Gradient Descent

- i dea behind gradient descent
- smoothnes)
- strong connexity
- convergence analysis of GD ander smoothness and strong convexity/ smothness assumptions

Relis assume for simplicity that C=Rn

We start looking at a greaty approach

O start at xo

O lov i=0 to -
- find y sit f(y) < f(xi) | Nork?

- xi=y =>

Auswey

As long as me on find y s.t fixt < fixt)

Hes it works. Because all local minima

yes it works because all local minima

are also glober minima. (fix convex)

are also glober minima. (fix convex)

How do me find y s.t fixt) < fixt)

How do ne find y 5.4 fry) × f(xi)

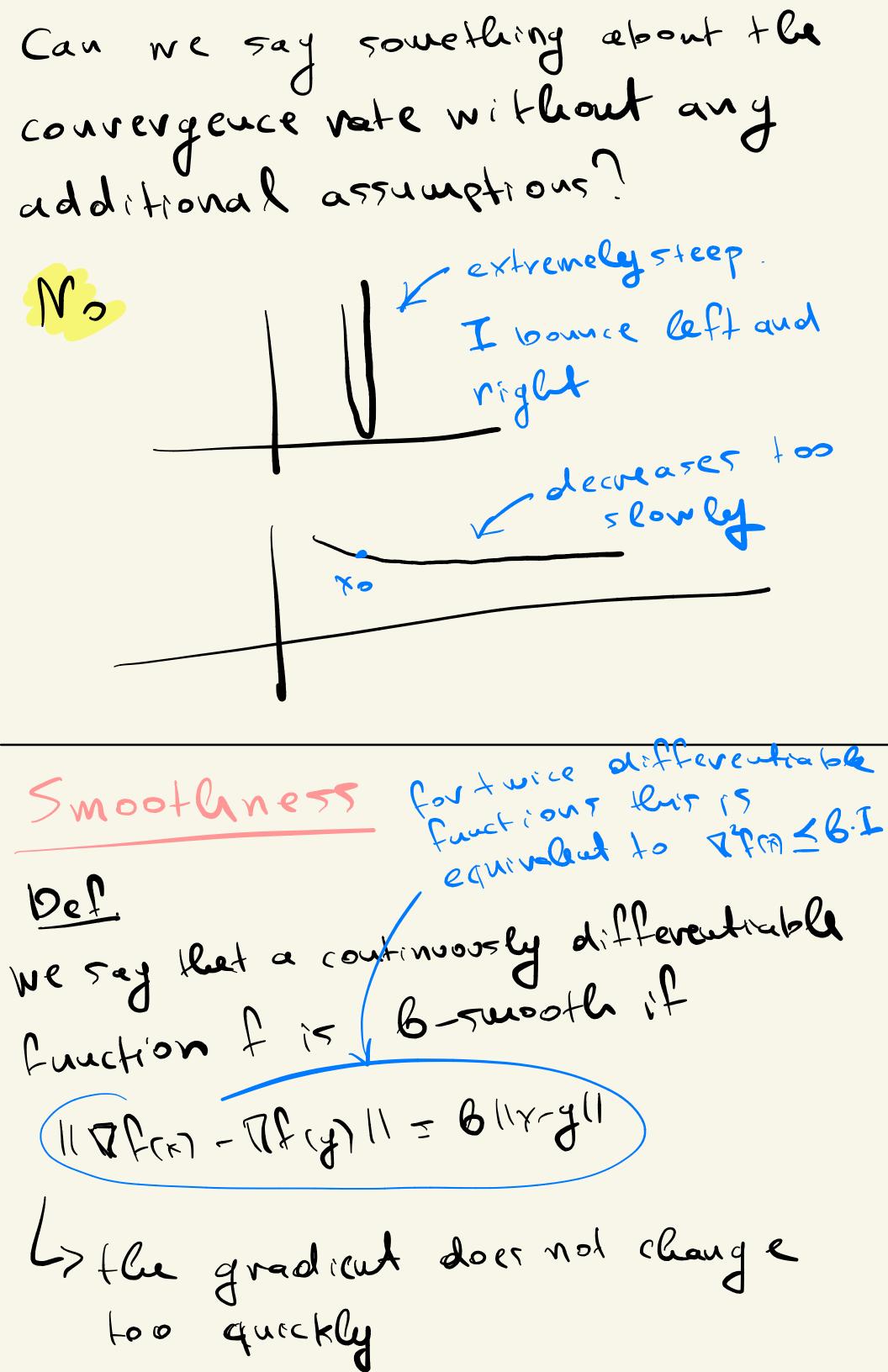
(let 15 assure that everything is

differentiable and fine)

Since fry ~ frx) + 7frx) (y-x) if

y is close to x

Lake y x = e.(-7frx)) ==>


=> (th) = (th) - Elleter) 15 < (th)

J= X + & (-T(Fin)) direction

step = 122 (some algorithm use different)

direction v as long as (N, Tfrico)

Gradient Percent method (GD)
- start from Xo t=0
determine a descent divection Vt (e.g Tfixe) can deser - choose a step size no
(e.g TP(xe))
- choose a step size mis
- up dete 76+ = Xt + NtVt
Is the stopping of 465
Is the stopping yes witeriou setistical? Weturn Yet
Ame rearch = choose the step size that minimizes the
abledive function
a long some fixed
descent direction
12 12 année de mare
volg? Because it may be le case
that minf(xx+nxx) is ner eary!!!
eary: 1

Question. when is the first order laylor approximation f(4) 4 /(4) (A-x) of good approximation! [(4) a vlen fis 6-smooth and 6 is small williost assure y can be more distant from x, b come ouly if we know that the 4 cz verd gredicul (lange) close to x ela borte 5 lowly 12 f(x) 4 Df(x) (f-x) a good approximation for y x-2 ave (x) + (x) + (x)(2-x)

2-y ave (lore

f(x) ~ f(2) + (x)(y-2) fr) = fr) + 7fr)(4-x) rusothue55 77Fm = 7512

take away point Intuitive If 117fmill is large ne can be unconstrained aggressive in our optimization (ne ave seauching for x? s.t ((7fr=2)) |= 0) and 5 tep T(f(x) (lauge) slowly) Some claims about 6-5 month functions Ofry) = frx) + Trx1(y-x) + & lly-xll²
good Cinear approximation 12 in le line connecting × and y 5+ f(A) = f(x) + (L(w)(A-x) + = (A-x) (A-x) (A-x) てもいけはたい(チャ)ナラ(チャン)・B・エ(チャン) = f(x) + 7fm(y-x)+ = 11y-x112

2 f(x-18 fm)-fm1=-117 fm112 5 mail 6 taking the descent direction 1 can be of the negative gradient and a step size of 1/e rend aggiverive 1 decrease I am som I am goura a lot decreate!!! proof ①かたれこといり・なたいパーツナ管パーメリュニーン => f(A)-f(x) = \(\frac{1}{2}\chi^{\chi}\) \(\frac{1}{2}\chi^{\chi}\) minimize tle MB 7 (no) = 17 frx) + 6(y-x) => => (4(NB)=0=> A= x + (4)(-12fm) by replacing we get TAM (- TEM) + & 11 & (- TAM) 11 = = -11xfm112 + 26 11xfm112 = 28 11xfm112

3 fits 2 time petter connexist.

Sp. Sp. Like petter connexist. Intuition: I increase by consecutive linar approximation) by llainking that Their f(7) 1 (x+1 (x+1 -x+) (4)-tex) > (4text)(x+4-x+) texo)

x= textod

x= textod

x= textod

x= textod = 16h) (A-(x-19) + 12(x) ((x+2)-x) = = 77fg)(8=x) - 7fm)(4=x) = = (15cd) - (15cd) (3-x) lets assure 117768)-7760)11117-X11> that pregnip of convexion 21 MOGA1-1447112.66

feorg for any 2 we have f(x) + \(\f(x)(2-x) \le f(2) \le f(y) + \(\f(y)(2-y)\) + => f(y) >, f(x) + 7f(x)(2-x) - 4f(y)(2-y). - & 112-y112 (7 f(x) - (7 f(x)) (2-y) - (7 f(x)) (2-y) - (7 f(x)) (2-y) - 6 112-4112 = maximize (77 fr) / (2-4) + & 112-4112 7, (=) =0=> (77fy)-77fm))+62-6y=0 => Z= y - 1 (7fy)-7f(x)) replace $2-J=-I(\pi f(y)-\nabla f(x))+0$

Covolarry (coercivity of the gradient) (16th - 16th) (1-x) > = 1/26th - 1/2/1/5 broot a "lattle bit" better converity. $\int_{\mathbb{R}^{2}} f(x) - f(x) \leq 2L f(x) \left(\frac{1}{4} - x \right) - \frac{58}{7} ||Af(x) - Af(x)||_{S}$ $\int_{\mathbb{R}^{2}} f(x) - f(x) \leq 2L f(x) \left(\frac{1}{4} - \frac{58}{7} ||Af(x) - Af(x)||_{S} \right)$ (f) => ... Strong convexity This mail

Def

Def

Le say lent f (a - troughy courts)

If fry > frx) + Tfx (y-x) + Ca lly-xll²

Intuitive take-away point

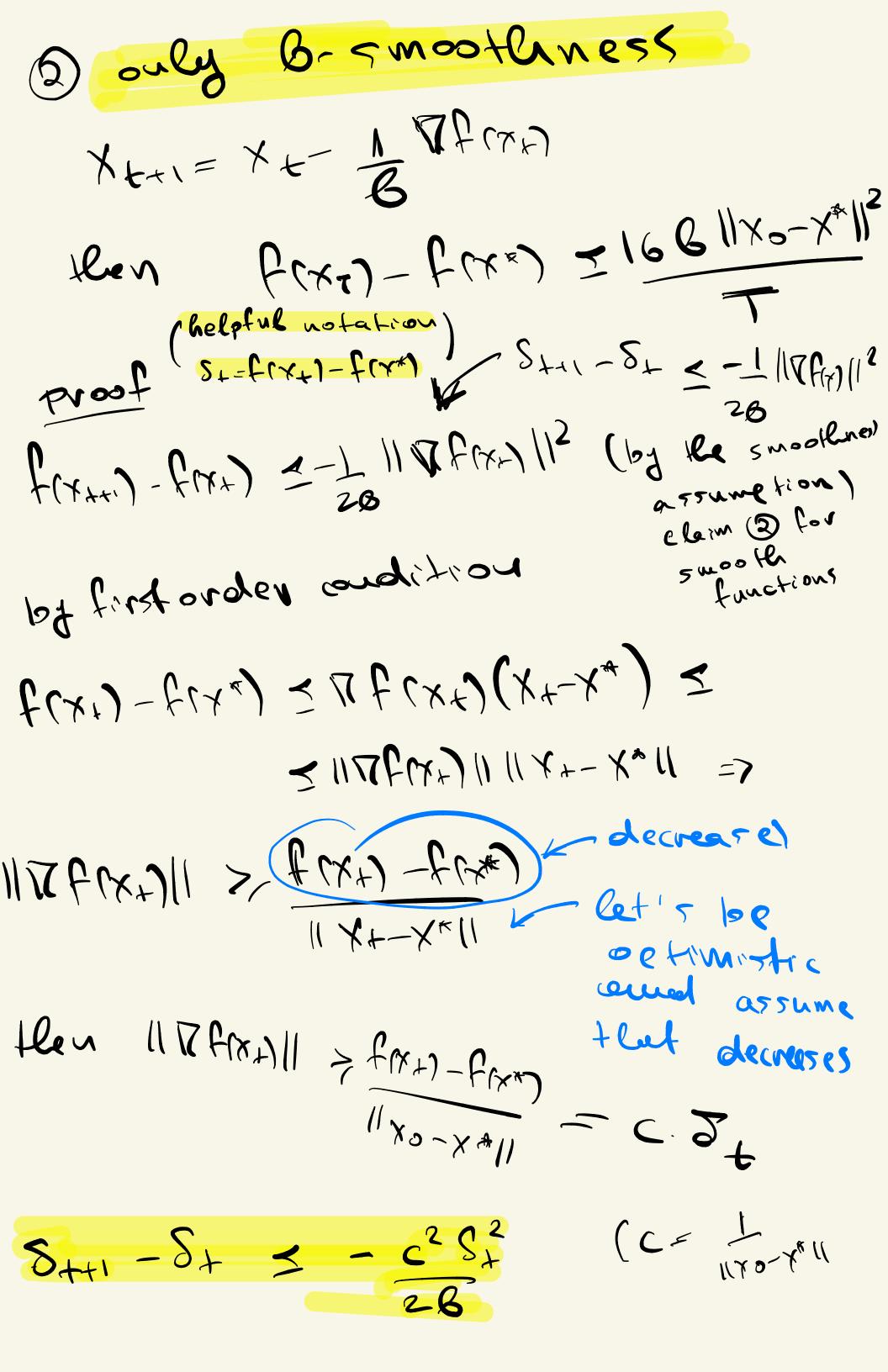
When || Tfx) || (5 small

Stop (because lly-xll²

Stop (because lly-xll²

and consequently fry) > fx) if m more

slyftly move) y ofthal solution is closed


claims 1 117Fan112 > fan-f(x*) If gradient is small me are good!!!! Jeerd (4)>, f(x) + (1/4-x) + = (1/4-x113 $\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) = 0 = 3 - \alpha \left(\frac{1}{\sqrt{2}} - \alpha \right) - \alpha \left(\frac{1}{\sqrt{2}} - \alpha \right) = 0$ $= 3 - \alpha \left(\frac{1}{\sqrt{2}} - \alpha \right) - \alpha \left(\frac{1}{\sqrt{2}} - \alpha \right) = 0$ $= 3 - \alpha \left(\frac{1}{\sqrt{2}} - \alpha \right) - \alpha \left(\frac{1}{\sqrt{2}} - \alpha \right) = 0$ => y= x - = xFm) => f(x1-f(y) = 1 117f(x)112

holds $4j = 7y = x^4 \times solution$

3 11x-x*112 = = 11xfxx1112 If the gradient is small not only frx) ~ frx*) 100 t X is actually close to X* Proof f(x*)2/f(x)+(f(x)(x-x)+a(1x-x,15 > f(x) - trefred 1/xx-x11 + call xx-x11 2 aucly- schwartz (xx is a minimizer $\lfloor (x_k) - t(x) \leq 0$ -70 Otler common assumptions 1(f(x)-f(y)) = 4.11x-41 d-dipschitz my function does not clarge Frite CIX-JII ER Diametry I am a lowers at most R fav away from xt

convergence analysis of GD
Da-strongly conver (B>a>0) B-smooth
メトリーメトータイト(ツ)
len f(x7)-f(xx) < (1-3) (f(x0)-f(x*))
ex7,1+x, = = = (f(x0)-f(x^n)=
70 ensure (2) Yo-X* ²
On a Cont 25
T = 6 for -f(x) $T = 6 for +7 for $ $T = 6 for +7 for$
$f(x_0) \leq f(x_n) + \sum f(x_n)$
(monthson) = (xo) < f(xx) + 2 f(xx) (xx-x) = (larget mall) = (xo) < f(xx) + 2 f(xx) (xx-x) = (larget mall) = (xo) < f(xx) + 2 f(xx) (xx-x) = (xo) < f(xx) + 2 f(xx) = (xo) < f
(t) (t) (t) (t)
O(log 1/2)

broot ((xx)-t(xx) = (1-9), (tux) tux) In every Heration Ye 77km Idea D we decrease our objective by 2B 117f(xf)112 3) we are at most I 11 xf(xxx1) 112 fav away from the obtimal solution f(x+1) < f(x+1) = 2B $= f(x+1) - f(x) < f(x+1) - f(x) - \frac{28}{28} = \frac{-f(x+1)}{-f(x+1)}$ = 5 + (1 + 4) - (1 + 4) = (1 - 9) ((1 + 1 + 4) + (1 + 4))

$$S_{++1} - S_{+} \leq -\frac{c^{2}}{28} S_{+}^{2}$$

how much time I do need to belf the distance Stans

Before I get St < St

I couve a decrease of at least

 $\frac{C^2}{26} \cdot \frac{S^2}{4} = \frac{C^2 S^2}{86}$ at each step

=7 T. $c^{2}S_{+}^{2}$ =7 T. $c^{2}S_{+}$ =7 T. $c^{2}S_{+}$ =7 T. $c^{2}S_{+}$

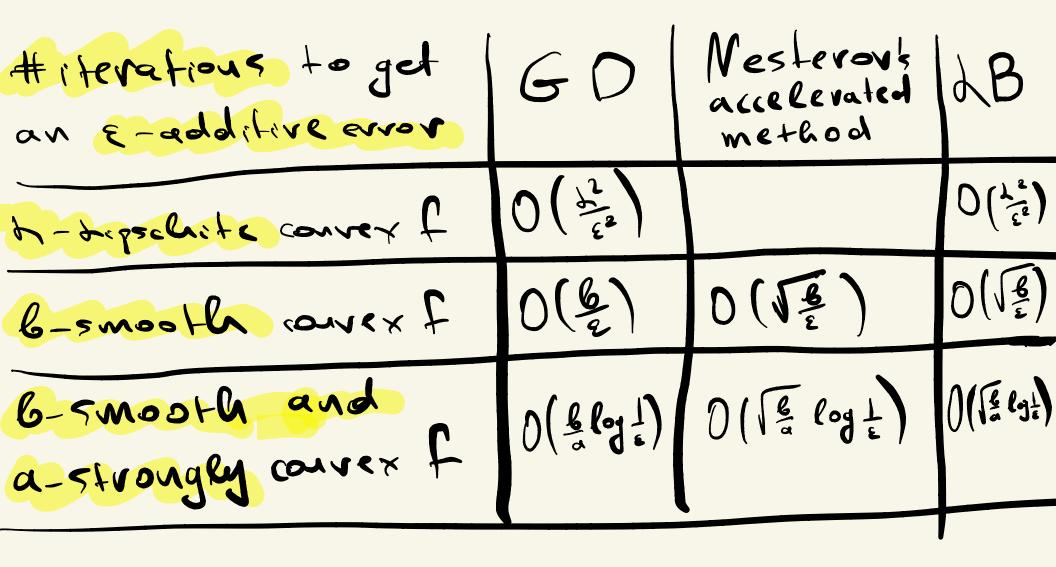
It I need to balt my error I times =>

=> Trobal < 46 + 2/8 (2) + ... + 2/8 2 =

 $=0\left(\frac{416}{2^{2}}\cdot\frac{2^{5+1}}{50}\right)=7^{\frac{11}{11}}$

 $= 7 \frac{So}{2d} = O\left(\frac{B \cdot 11x^{k} - xo11^{2}}{T_{total}}\right) \Rightarrow f(x_{T_{total}}) - f(x^{k}) = 0$ $= O\left(\frac{B \cdot 11x^{k} - xo11^{2}}{T_{total}}\right)$ $= O\left(\frac{B \cdot 11x^{k} - xo11^{2}}{T_{total}}\right)$

Last claim to prove. 11 Xt - Xx112 : L Non gechorsing = 1) X+ -X* 1 + 117 F(x+)112 - 3 rfkr) (x+-x*) = < 11x4-xx112 -T 11x62x7115 [(17fm)-7fm)|4-x) = 0


Now we summarize the performance of

OP for different properties of the convex

I that we are optimizing over, and we

compare it to Nesteror accelerated method

together with lower bounds on the performance
of any optimization algorithm.

We lide the dependence on the nurthal dislance from the optimum (11x0-x*11) in the O() notation. Here we focus mainly on the dependence with a Although, as we will see for the min-cut proplem getting a better dependence with 11x*-xoll is important, and Neterov's accelerated wellood also achieve that.

For a table summarizing many more convergence vates of various optimization algorithms. Please see the end of chapter I in Bubeck's book end of chapter I in Bubeck's book (convex optimization: Algorithms) and complexity