Strong duality decture 5

- Recup of last lecture

strong duality

and XXT conditions Complementary slackness couditions

Primal optimization problem

inf folk)

domain of the optimization problem D

D= donton (dont: n ndont;

 $5.+ \qquad first \leq 0$ Girst = 0

& ie[m]

* de[p]

fearible set

pt = -00 ; fille problem is unbounded below P* = +00 if the fearible set is emety Pt er il "everything" 15 live

dagraugian
$\mathcal{L}(x,y,h) = \mathcal{L}_{o}(x) + \sum_{i=1}^{m} \mathcal{L}_{i}(x) + \sum_{i=1}^{m} \mathcal{L}_{i}(x)$
Lagrangian dual function
$g(\lambda^{\prime}m) = int T(xy)$
Cennas and observations
7 >0 ~> q(n,u) = 7*
dual program Max g(7,u) loest lower bound d* Max g(7,u) d* < p* ~ weak duality always a convex program (no neather le primal)
Strong duality d'=Pt The always When does it hold? Sigeneral courter programs ~ rootalways
slaters condition = sofficient condition
Slater's condition = sufficient condition for strong duality to lappen in car

relat(5) := {x & 5 ! 1 & 20 B(Ex) (1 aff(5)) } Slater's coudition 11 Leasible point I xereliut D ru lle relative ruterior lest satisfin (x) = 0 filks = 0 (if fi was affine) non-affine (icx) <0 (if fi is not affine) strictly Theorew For courex programs Reu strong It 56 der's audition les Rol Cobseration: note that duality holds. in 27 Slater's coudition orprogrami) We will prove a weater revolve of 5 Cater's coudition, that is JX E INTO ST 7 (Port AP it does not Ofice all megnality constraints
including le affine
minor assumption ones? D the equality constraint are linearly independent.

proof
consider the set $A = d(t, v, u) \mid A \times s + t > form vi = airx$
0 los errotion 1
A is a courex set (eary to check since fi are courex)
observation 2
if (t,0,0) eA Reu Reve is a fearible
if (t,0,0) cA leu leve is a fearible solution will value t.
det et be le primal optimal value
det at be le oximal optimal value

det pt be the primal optimal value
then if point (5,0,0) with 52pt
we know that (5,0,0) &A

let B= 3(5,0,0) (52pt)

B is convex and by A and
B are disjoint my separating
heroveur !!!

J Derm, MERM, aER 5.+ (nf) u + pr. v + at > sup a.s (t, v, n) eA (s,0,0) eB since 19 = ((5,0,0), 5-p* (5 up $a.5 = p^{x}.a$ (5,0,0)6/3 thus inf Tu+NTV+at >, apx (t,v,m)eA since t and u are unbounded above for ile infimum not to be -00 we need now assume let aro condition + Clen (nf (21) u + (1) v + 6 > p*

(t, v, u) and because now all the multipliers

are non-régative

Air lle Epigrepen of the optimizetean problem

$$= 7 \inf_{x} \lambda \left(\frac{x}{3} , \frac{3}{3} \right) \frac{x}{3} = 7$$

Now Pet's prove that 5 Pater's condition ensures that aro.

proof (by contradiction)
assume that $a=0$, by the definition
of A we get
$\sum_{i=1}^{m} \gamma_i f_i(x) + \sum_{j=1}^{m} \mu_j(A_j x - b_i) > 0 + x \in D$
By 5 Pater's condition there is a point
flut satisfies all non-affine mequalitées
strictly 97
Strictly = 7 $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{$
=> [] = 0 any direction is possible for sofficiently small s A = [A] AT + O ()
$= 7 \times e 1ut(B) \sim 7 \times + 2.7 $ $= 7 $
2 vous of har and pecautif
(0, M, 0) 5 Goold
be a seperating lyperplane,

because I can go in any direction I mont. I can find x' s.t p. Ax' <p. Ax $= \sum_{A=1}^{\infty} (\mu^{\mathsf{T}} \cdot A \cdot \times' - b) \mathbf{j} < 0$ => contradiction (pecaute (qui)) 5 hoold separate A and 19) geometrie intuition ternot of luprerplane

serarating luprerplane

Serarating luprerplane

Solventing luprerplane int Corx f, (x) =0 Jrento, f, (x) <0

X* is primal optimal

7*, µ* are dual optimal

then: [o(x*) = g(n*, u*) =

= いかと(メン*)で*)こ

\(\frac{1}{\times \gamma^* \gamma^* \gamma^*} = \frac{1}{\times \gamma^* \gamma^*} = \frac{1}{\times \gamma^* \gamma^*} = \frac{1}{\times \gamma^*} = \frac{1

 $= to(x_{\epsilon}) + \sum_{i=1}^{20} \int_{i}^{20} ti(x_{\epsilon}) + \sum_{i=1}^{20} \int_{i}^{20} \int$

< − € ° (×e)

the mequalities hald as eanalities まいれて(メンメ, ル*)=ア(メ&ン*, ハ*)

2nd () * fi(x*) = 0 xi e [m]

(ouplinente ry 5 Rackness

necessary conditions for apair of primal and dust solutions to be optimal.

LKT conditions (when everything is differentiable and nice

D Xx = ard win T(X)y, hr)

=> (xx)xx)=0 =>

=> P(o(xx) + 2)* P((xx) + 5 M Ph/ Ph/(xx)=0

necessary couditions for any pair of primal and dual to be optimal.

Primal feasibility

CULA) TO FEE[m] PALX#) = 0 + FEE/J

dual feasibility

1tro fie [m]

eouplementery slackness

7. C(xa) =0 x [[m]

Lagrangian optimality $\nabla f_0(x^*) + \sum_{i=1}^{\infty} \gamma_i^* \nabla f_i(x^*) + \sum_{i=1}^{\infty} \mu_i \nabla \mu_i(x^*) = 0$

Commen
It the problem is convex then the
XXT conditions are also sofficient.
Proof
$g(\lambda_*'h_*) = int T(\lambda_*) \lambda_*'h_*) =$
$= \mathcal{L}(x^*, \lambda^*, \lambda^*, \mu^*) =$
2 (fixed)* h = to(x") + 2 /(1/x") + 2 / 1/1/x")
(x) y pt) is court
n x (since we = +0/x)

problem is couvex)

problem is couvex)

global

plocal => global

optimality

optimality

min éx rouvex 5.1 20 D= 2(xiy) 5.1 y20 d couvex (quadratic over linear) Oftimal ralne $-7 \times = 0 \sim (e^{-8} = 1) = e^{*}$ $g(\eta) = \inf_{x \in \mathcal{X}} \{e^x + \eta \cdot x^2 \} \{\chi_{xx} - \infty \}$ max $g(n) = 5.1 \ \text{J} \ \text{J} = 0$ P*-d=1-0=1=> duality gosp =>500ter condition should not be satisfied X(xy)eD X/4 20 lud eed Phir is watered of Separations lyer oling 1