Lecture 21

Dual programs

- coujugate function
- examples of conjugate functions
- consex brohmaz ang examble?
- dual programs and weak duality
- examples

Conjugate functions
Goal: défining le dual function of
a function f:R'->R
the dual fruction harto
pe of the born t: by-25
and (as for sets) has to
tede voiteannaling about
Most to do?
What to go!
supporting byperplanes of epit
00; f=d(x,t); x=dowt, t>x(x))
S(s) = sup) g,x +or + 1x coront (
16 11>0 there S(3/H) = +0 (+ 15 MIDBOURSEA)
So to get useful information, me only
need to look at MSO

M<0
S(s,m) = supdy x+nt/x cdouf / m=0 Seeif () = supdy x+nt/tr,f(x)
= sup gy x + m f(x) x ∈ dout (
H=0 ~ doer not store any wretich
H=0 ~ doer not store any wreful information about le function value
1000 me can rescale (JM)
M<0 tlen we can rescale (J/M) since the usefull information
15 5+012 01 (1)
Overall: ne just care about tuples of
the form (4-1)
Definition of conjugate function!
Given firmor le conjugate function f* is
defined as
C* > - = ND 3 4 x - + (x) 1 x = 0,000
Observation. Ex 12 convex (of affine (in f) functions)
Observation : Ex 12 connex (of affine (in 9)
functions)

```
Tleorem
Pis convex
epifira closed convex set (=>f*==f
examples of conjugate functions
f(x) = xlogx, xert (negative entropy)
  f^*(y) = \sup\{y : x - x \log x\}
                                         (yx-xlogx)=0=>y-1-logx=>
           =7 X = eg-1
                                           f*(y) = y. &-1 = d-1 log ex-1 =
        =y\cdot e^{y-1}-e^{y-1}(y-1)=e^{y-1}
f(x) = \int_{2}^{x} x^{T}Qx, Q invertible f(y) = \sup(y^{T}x - \frac{1}{2}x^{T}Qx)

symmetric
(y^{7}x-\frac{1}{2}x^{7}Qx)=0=7 y-Qx=0=7
=> x=Q"y
```

=>
$$f(x) = y^{T}Q^{-1}y - \frac{1}{2}y^{T}Q^{-1})^{T}QQ^{-1}y =$$

=> $f(x) = y^{T}Q^{-1}y - \frac{1}{2}y^{T}Q^{-1}y = \frac{1}{2}y^{T}Q^{-1}y =$
= $y^{T}Q^{T}y - \frac{1}{2}y^{T}Q^{-1}y = \frac{1}{2}y^{T}Q^{-1}y =$

valley of loal optimum Proof Intuition: Meeper valley

In order to travel of global optimum

Optimum

Optimum from the shallow ralley to the deep valley I need to climp a luill and then descend as non convex let x be a local optimal solution => => fo(x) = inf ffo(2) /2 fearible, 12-x112=R for some RZO towards contradiction suppose that JyER" then $f((1-\epsilon) \times + \epsilon y) \leq (1-\epsilon)f(x) + \epsilon f(y) <$ Courexity $C = \{(1-\epsilon) \times + \epsilon y\} \leq (1-\epsilon)f(x) + \epsilon f(x) = f(x)\}$ $C = \{(1-\epsilon) \mid f(x) \mid + \epsilon f(x) \mid$ Coy the leve petween two fearible points) € small enoogh 112-x112=R and for> < for) which is a contradiction

différentiable functions
easy to check condition for the easy to check condition. optimality of a solution.
optimality et a solution u=x>>00 f
X 15 optimal iff < (The transfer of I as
Learible solution y (Intuition: if I go versus any fearb
direction, I incre
Proof
$f(y) > f(x) + \langle \gamma f(x) / \gamma - x \rangle$
7Co(x), y-x>>>0 fg fearible
==> to(A) - to(x) >= 0
X is optimal and Agreatible 5. t
< 7forx) (4-x7 < 0
Set $Z(\xi) = (1-\xi) \times + \xi y$ ($Z(\xi)$ is faitible)
$g(s) = f_{o}(2(s)) g(o) = f_{o}(x)$ $g(s) = -(2(s)) g(s) = g(s) + g(s) \cdot s + r(s)$ $= 7 g(s) + g(s) \cdot s + r(s)$ $= 7 g(s) + g(s) \cdot s + r(s)$ $= 7 g(s) + g(s) \cdot s + r(s)$
=> Alestalos for smy for and

Corollary for unconstrained optimization f y =? < 17 (4) 18-4 > > 0 =7 117for112=0 proof Let $y-x=t\cdot \nabla f_{o}(x)$, t<0=> < 7(50x), y-x7 = t.117fo(x)112 but since too turformizeo => = t 117 Form12 >,0 => 112(20)11 =0

Dual program)
Da way not to be contrained
Da væy to prove Conerbouro
we define the Lagrangian associaled
with inf form) as!
s.t first o Yie[m]
airn =0 ffe[p]
$\gamma(xy'n) = fo(x) + \sum_{k=1}^{j=1} f'(x) + \sum_{k=1}^{j=1} h'g'(x)$
day vary rau multipliers
the rectors 9,04 dual variables
dagrangian dual Praction
$g(\eta,\mu) = \inf_{X} L(\chi,\eta,\mu)$
\sim

Observation
supporte 97,0 Then g(Mu) 15 a lover bound on the optimal value p* of the primal program.
A & tearible $J(f(x)=0)$ $f(x,y,\mu) = f(x)$
=> g(n,m) = inf h(x),m) < d(x,n,m)= < (20(x))
and g(7,m) < fo(x) + x fearible holds especially for the optimum
value => g(n,u) < inffo(x) +n,>0 x fearible Hier
dual program max g(7,u) value 7 > 0
weak duality of $\leq P^*$

Observation
tle dual program 15 always à courer
the dual program is always a courex program no matter the primal!!
0
way ** A(x), m) is an affine function of 7, m = 7 convare of 7, m Convare
q(n) = infirmer our concare function)
Jourane
dual program = 7 maximization of a concare function
=> convex brodram

examples 1) heast square min x^Tx s+Ax=b $g(\mathbf{h}) = \inf_{\mathbf{x}} f(\mathbf{x}, \mathbf{h}) = \inf_{\mathbf{x}} f(\mathbf{x}, \mathbf{x} + \mathbf{h}, (\mathbf{x} - \mathbf{p})) =$ $= |vf(x^7x + v^7Ax) - v^7b$ $7_{x}(x^{7}x+u^{7}Ax)=0=7$ $= 7 2 \times + A^{T} \mu = 0 = 7 \times = -\frac{1}{2} A^{T} \mu$ タ(ル)=- シガイ(シ)ATH ナガイ(シ)ATH-ガム $= \frac{1}{4} \mu^{T} A A^{T} \mu - \frac{1}{2} \mu^{T} A A^{T} \mu - \mu^{T} b =$

= = Lymany - ptb

- Le dual is uncontrain ed !!!

- Le dual is uncontrain ed !!!

$$\sqrt{h} \left(\frac{1}{4} \mu^{T} A A^{T} \mu - \mu^{T} b \right) = 0 = \rangle$$

$$= \gamma - \frac{1}{2} A A^{T} \mu - b = 0 = \rangle$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A^{T}}{4} \right)^{T} b$$

$$= \gamma \mu = -2 \left(\frac{A A$$

Linear program (meen all filk) are affine) $Win < C \times 7$ s.t Ax \leq b g(y) = int y(x,y) = int(cix+)(Ax-P) $= \inf_{x} (c^{T}x + \gamma^{T}Ax) + \gamma^{T}b =$ $= N F(CT+3^TA) \times +3^Tb$ $\frac{1}{2} \int_{A} dt = 0$ sup 3 (M) => so the dual 7,7 May 77 b s. + AT.7=-C

entropy maximization $min \int_{0}^{\infty} (x) = \sum_{i=1}^{\infty} x_i \log x_i$ AYZb 17 * = 1 $h(x, y, y) = f_0(x) + y(x-1) + h(x-1)$ $= f_0(x) + \gamma^7 A x + \mu I^7 x - \gamma^7 b - \mu$ $= -\left(-f_{5}(x) - \gamma A \times -\mu T \times\right) - \gamma b - \mu$ $= -\left(\left(-\right)^{T}A - \mu M^{T}\right) \times -\left(-\right)^{T}b - \mu$ o(n,u) = inf h(xn,u) = = suph(x), m) = $= - \left(- \frac{1}{2} \left(- \frac{1}{2} A - \mu 1 \right) - \frac{1}{2} b - \mu \right)$

=>
$$f^*(y) = e^{y-1}$$

=> $f^*(y) = \sum_{i=1}^{\infty} e^{y_i-1}$

$$g(\eta, \mu) = -\frac{3}{2}e^{-\eta d} - -\eta b - \mu$$

Max - Ext. 5 e - 7b-4

5.+ **1**7,0