Lecture 3 Dual sets and

Dual functions

— separation theorems

— polar sets

— dual norms

First separation theorem Let SCRN be a non-empty closed convex set and V&S. Then there exists a yern s.t < y, v > < y, x > < y, x > < y, x > < y ern. Let SCRN be a non-empty closed convex set and V&S. Then there exists a yern s.t < y, v > < y, x > < y, x > < y, x > < y, x > < y ern. Let Suffices to prove that a yern. Let Y, v - x > > 0 f x e S

<y, v- x>> > = fx=5 want to prove that for some yern there may be multiple descreitor of by resplaines that separate the convex set from the point, but a good audidate want to prove thet is le taugent et x* =d closest x ∈ 5 \(\text{\pi} \ \text{\ +0 V C sufficer to prove that <V-X*, X-X*> <0 4 x e 5 does luis lided pictorially? descreitor of the lyperplane and conditate Laugent 15 1 +0 V-X* and because of convexity tle augle between $X-X^*$ and $V-X^0 \ge 30^\circ$

X* 5+ Minimizes 11x-v112 over 5 $4 \times -x^*, v-x^* > 40 + x \in 5$ take $z = (1-\epsilon) \times^{*} + \epsilon \times (x \in 5, \epsilon) \circ (26)$ 112-V112=11(1-E) x*+Ex-V11 = $= || x^{*} - v - \varepsilon (x^{2} - x) || = || x^{*} - v || + \varepsilon^{2} || x^{*} - x |$ $- 2 \varepsilon (x^{*} - x^{*} -$ - 2 E (x*-V,x*-x) $= > 112 - v11^{2} - 11x^{*} - v11 = \epsilon^{2} ||x^{n} + x|| - 2\epsilon (v - x^{*}, x - x^{*})$ because xx minimizes RH5 20 => \(\int 2 || \times^* - \times || = \Q \(\int (V - \times^* \times - \times^*) > 0 $=> (V-X^*,X-X^*) \leq \frac{\varepsilon}{2} ||X^*-X|| + \varepsilon > 0$ $\forall x \in S$ E-10+ => (V-X*/X-X*) <0 technical defail bere ne used 11/-xx112-<1-xx/x-xx>>0 sufficer to prove that <V-x*, x-x*> <0

thent 5 15 closed and thurs 114-x*112>0

Second separation theorem
1-15 and 52 be two difformat closed
toke (+ one of these)en
also bounded (say 2)
s+sup(y,x) < min(y,z)
Proof I want to prove that $\exists y \in \mathbb{R}^n$
y(x-z) = y zero vector
av element of the Uinkonsti
1 leverch 5 - 22 - 4 x 2 ' ' '
we are "lucky" and we can note the first separation
Heorem, perouse:
$ \left(\begin{array}{c} S_1 \cos w \\ S_2 \cos w \\ \end{array}\right) = \left(\begin{array}{c} S_1 - S_2 - S_2 \\ \end{array}\right) $
2) 5, closed = 7 5, - >2 (18)(0) 52 compact = 7
(3) $0 \notin S_1 - S_2 (S_1) = 2 \text{ are any } $ $Sup y \cdot w < 0 = 7 Sup (x-2) w < 0 = 7$ $x \notin S_1$ $x \notin S_2$ $x \notin S_1$ $x \notin S_2$ $x \notin S_1$ $x \notin S_2$ $x \notin S_1$

2) 5, closed 1=75,-52 closed 52 compact (=75,-52) proof Cet Wn be a sequeuce in Si-Sz and vn -> w e went to prove that WES1-52. $Wn = \chi_n - Zn$, $\chi_n \in S_1$, $Zn \in S_2$ exists a subsequence nist Zni -> ZeSz $\forall n_i = Wn_i + Zn_i \longrightarrow W + Z$ convergel converger => the limit exists and it is no id no since the limit exists and Siis chosed we have that w+zeS, =7 WES,52 $W = (W+2) - Z \in S_2$ Cloted set flat approables x-axis 51-52 15 closed J+le assumption of on set to be pounded cannot pe removed Closed set that I we want strict approaules x-axis separation

from below

Theorem (more general horse layrer Rame)

SIS2 two disjoint convex sets. Then I y eRn s.t sup y x x inf y.z Definition - Supporting lyperplane Given a get S S Rn and a point xo on the A ligherplane 1x 191x=91x0 1 15 called a

Supporting ligherplane to 5 at point x0 This also C ytx = ytxo xxes Supporting hyperplane theorem If CSRn is convex then at any boundary point there exists a separating ly perplane

Polar sets
Alternative representation of a convex
set C.
Support function Support function Lar in a certain
Soy) = sup dy x 1xec / direction does
C goe,
demma are important and intuitive will strict
which sustant and intuitive
L'emma will strict
C C CONVEY
5 (4) HYER
Proof intuition = since ouvex 1+15 enough
La laine the Ministra
proof sketch: Oprove that the boundaries are the same
the separating lyerplane leoven

knowing that Sofy) = supgy x 1xec (is an
important définition ne can défine
the dual object of a set
polar set of C
C* = {y e Rn y x ≤1 +x e C
observations
DC* 15 couvex (no motter what C 15)
y, ∈ C* (0 y, + (1-0) yz) x = 0 y, x + (1-0) yz x =
$4^{2} \in C^{\prime}$ $\leq 0.1 + (1-0).1 = 1 = 7$
=>041+(1-0)72 ECA
Darestion: Assume Cisa cloted conex
5 et. When does C* contain all the
information about C?
Answer: because in O filete is no information stored. O ECA and SCO=0 no matter the courex set C no matter the courex set C
LUER -901 AND W=SUT A
- July 1 x 6 () >0 iff d' - '
H=30/10 // XoeC
iff y = 0 iff y = 0 iff y = 0
iff $y \cdot x \leq 1 \forall x \in C$ a. $y \cdot x \leq 1 \forall x \in C$ a. $y \cdot x \leq 1 \forall x \in C$ a. $y \cdot x \leq 1 \forall x \in C$ and $y \in C^*$ by $y = 0$ $y \neq 0$ $y \neq 0$ $y \neq 0$
4 4

So, if Cit a clorred convex
set and Sc(y) 7,0 type?
then Commandains all the
information about C.
Question. When doer 5 (y) >,0 typen
1-> C contains the origin.
using Separating Cyperplane leoven
From all fleet discussion
From all fleet discussion we are ready to formulate the
Reconstruction theorem I Cis a closed convex set that contains the origin then C** = C

proof We will prove that CCC** and C**s C. C* = 7719.x < 1 +x < C) CAA = 9212-421 x y E C* xeC=7 y·x=1 fyec*=7 xeC* (every element of c* bes to beve y-x=1)
with all x'ec => C \(C^* \) (ne will prove that P&CAX) let PFC since Circlosed and convex = 7 DycR", SUP J'X < J.P C (outains the origin => sup y.x >>0 If Sup y.x >0 then we can scale up y 5.7 y'P > 1 50ch that y'=ay, a71 549 g' x = 1

Dual norms
given a norm function 11.11; Rn->R
the dual norm of 11.11 is définéed as
11 y11 x = sup of yt. x 1 11x11 < 1 /
11911x = sup 197x x = B (B= 9x = 11x 11 × 1)
11.11 measures ban "big"is an element
11.11x measures haw "big is the linear functional" associated
with an element.
How much this livear functional can stretch
ele me et 5
3x = 74 1114114 51 (= 14 197x = 1 4xeB (=
Polar ser of D Barel B* are polar sets of each ofler. => 11x11* = 11x11 ne only care about the nut circles.
,