Lecture 3

Dual sets and dual functions

- separation theorems
- polar sets
- dual norms

First separation theorem

Let $S \subseteq \mathbb{R}^n$ be a non-empty closed convex set and $v \not\in S$. Then there exists a $y \in \mathbb{R}^n$ s.t. $\langle y, v \rangle < \langle y, x \rangle$ for all $x \in S$.

Proof:

It suffices to prove that for all $y \in \mathbb{R}^n$:

$\langle y, v - x \rangle > 0 \quad \forall x \in S$
want to prove that \(\langle y, v - x \rangle > 0 \) for some \(y \in \mathbb{R}^n \)

there may be multiple hyperplanes that separate the convex set from the point, but a good candidate is the tangent at \(x^* \) closest \(x \in S \) to \(v \)

\[\langle v - x^*, v - x \rangle > 0 \]

\[\langle v - x^*, v - x - (x - x^*) \rangle > 0 \]

\[\Rightarrow \|v - x^*\|^2 - \langle v - x^*, x - x^* \rangle > 0 \]

suffices to prove that \(\langle v - x^*, x - x^* \rangle \leq 0 \) for \(x \in S \) does this hold pictorially?

\[\text{Yes, the tangent is } \perp \text{ to } v - x^* \]

and because of convexity the angle between \(x - x^* \) and \(v - x^* \) is 90°
\(\mathbf{x}^* \) minimizes \(\| x - \mathbf{v} \|^2 \) over \(S \)

Then \(\langle x - x^*, v - x^* \rangle \leq 0 \) \(\forall x \in S \)

Proof

Take \(z = (1 - \epsilon) x^* + \epsilon x \), \(x \in S \), \(\epsilon > 0 \)

\[
\| z - v \|^2 = \| (1 - \epsilon) x^* + \epsilon x - v \|^2 = \\
\| x^* - v \| - \epsilon (\epsilon \| x^* - x \|) = \| x^* - v \| + \epsilon^2 \| x^* - x \| \\
- 2 \epsilon \langle x^* - v, x^* - x \rangle \\
\Rightarrow \| z - v \|^2 - \| x^* - v \| = 2 \epsilon \| x^* - x \| - 2 \epsilon \langle v - x^*, x^* - x^* \rangle \\
\text{because } x^* \text{ minimizes RHS} \geq 0 \]

\[
\Rightarrow \epsilon^2 \| x^* - x \| - 2 \epsilon (\epsilon \| x^* - x^* \|) > 0 \]

\(\epsilon > 0 \)

\[
\Rightarrow (v - x^*)^T (x - x^*) \leq \frac{\epsilon}{2} \| x^* - x \| + \epsilon > 0 \\
\forall x \in S \\
\epsilon \rightarrow 0^+ \Rightarrow (v - x^*)^T (x - x^*) = 0
\]

Technical detail

\[
\| v - x^* \|^2 - \langle v - x^*, x - x^* \rangle > 0
\]

sufficient to prove that \(\langle v - x^*, x - x^* \rangle \leq 0 \)

Here we used that \(S \) is closed and then \(\| v - x^* \|^2 > 0 \)
Second separation theorem

Let S_1 and S_2 be two disjoint closed convex sets. If one of these sets is also bounded (say S_2) then $\forall y \in \mathbb{R}^n$

\[s + \sup_{x \in S_1} (y \cdot x) < \min_{z \in S_2} (y \cdot z) \]

Proof:

Intuition: I want to prove that $\exists y \in \mathbb{R}^n$

\[s + f_{x \in S_1, z \in S_2} \]

\[y \cdot (x - z) < 0 = y \cdot 0 \]

with the zero vector

an element of the Minkowski difference $S_1 - S_2 = \{ x - z : x \in S_1, z \in S_2 \}$

we are "lucky" and we can use the first separation theorem, because:

1. S_1 convex $\Rightarrow S_1 - S_2$ convex

2. S_1 closed $\Rightarrow S_1 - S_2$ closed

3. $0 \in S_1 - S_2$ (S_1, S_2 are disjoint)

\[\sup_{w \in S_2} y \cdot w < 0 \Rightarrow \sup_{x \in S_1} (x \cdot w) < 0 \Rightarrow \]

\[\sup_{x \in S_1} x \cdot w < \inf_{z \in S_2} z \cdot w = \min_{z \in S_2} z \cdot w \]
Let \(W \) be a sequence in \(S_1 - S_2 \) and \(W_n \to W \). We want to prove that \(W \in S_1 - S_2 \).

\[W_n = x_n - z_n, \quad x_n \in S_1, \quad z_n \in S_2 \]

exists a subsequence \(n_i \) such that \(z_{n_i} \to z \in S_2 \)

\[x_{n_i} = \frac{W_{n_i} + z_{n_i}}{2} \to W + z \]

since the limit exists and \(S_1 \) is closed, we have that \(W + z \in S_1 \).

\[W = (W + z) - z \in S_1 \]

\[z \in S_2 \]

\[\Rightarrow W \in S_1 - S_2 \]

\(S_1 - S_2 \) is closed

The assumption of our set to be bounded cannot be removed if we want strict separation.
Theorem (more general separating hyperplane)

Let S_1, S_2 two disjoint convex sets. Then

\[\forall y \in \mathbb{R}^n \quad \sup_{x \in S_1} y^T x \leq \inf_{y \in S_2} y^T x \]

Definition - Supporting hyperplane

Given a set $S \subseteq \mathbb{R}^n$ and a point x_0 at the boundary of S.

A hyperplane $\{x \mid g^T x = g^T x_0\}$ is called a supporting hyperplane to S at point x_0

if

\[g^T x \leq g^T x_0 \quad \forall x \in S \]

Supporting hyperplane theorem

If $C \subset \mathbb{R}^n$ is convex then at any boundary point there exists a separating hyperplane.
Polar sets

Alternative representation of a convex set C.

Support function

$$S_c(y) = \sup \{ y^T x \mid x \in C \}$$

which shows why polar sets are important and intuitive.

Lemma

C_1, C_2 two closed convex sets

$$C = C_2 \iff S_{C_1}(y) = S_{C_2}(y) \forall y \in \mathbb{R}^m$$

Proof intuition

since the sets are closed and convex it is enough to leave the information about the boundary

Proof sketch

1. Prove that the boundaries are the same
2. $x \in \text{bound}(S_1) \Leftrightarrow x \in S_2$ and use the separating hyperplane theorem
knowing that \(S_c(y) = \sup \{ y^T x \mid x \in C \} \) is an important definition we can define the dual object of a set

polar set of \(C \)

\[C^* = \{ y \in \mathbb{R}^n \mid y \cdot x \leq 1, \forall x \in C \} \]

Observations

1. \(C^* \) is convex (no matter what \(C \) is)

 \[y_1, y_2 \in C^* \quad (\theta y_1 + (1-\theta)y_2) \cdot x = \theta y_1 \cdot x + (1-\theta)y_2 \cdot x \leq \theta \cdot 1 + (1-\theta) \cdot 1 = 1 \rightarrow \theta y_1 + (1-\theta)y_2 \in C^* \]

2. **Question:** Assume \(C \) is a closed convex set. When does \(C^* \) contain all the information about \(C \)?

 Answer: because in \(\emptyset \) there is no information stored. \(0 \in C^* \) and \(S_C(0) = 0 \) no matter the convex set \(C \)

let \(y \in \mathbb{R}^n \) \(\theta \cdot 0 \) and \(\mu = \sup y \cdot x \mid x \in C \) > 0

\[\mu = \sup \{ y \cdot x \mid x \in C \} > 0 \text{ iff } y \cdot x \leq \mu, \forall x \in C \]

\[y \cdot x = \mu \text{ iff } x = \frac{1}{\mu} y \in C \]

iff \(\frac{y}{\mu} \cdot x \leq 1, \forall x \in C \)

\[a \cdot \frac{y}{\mu} \cdot x > 1 \quad \forall a \in (a \neq C^*) \text{ iff } \frac{y}{\mu} \cdot x = \frac{a}{\mu} \in C \]

if \(\mu = 0 \) all \(a, y \in C^* \) and \(S_C(a, y) = 0 \)

\(\forall a, y \).
So, if \(C \) is a closed convex set and \(S_c(y) > 0 \) for \(y \in \mathbb{R}^n \) then \(C^* \) maintains all the information about \(C \).

\[\text{Question:} \]

When does \(S_c(y) > 0 \) for \(y \in \mathbb{R}^n \)

\[\iff C \text{ contains the origin.} \]

\[\text{proof} \]

using Separating hyperplane theorem

From all that discussion we are ready to formulate the

Reconstruction theorem

If \(C \) is a closed convex set that contains the origin then \(C^{**} = C \)
proof

We will prove that $C \subseteq C^{**}$ and $C^{**} \subseteq C$

$C^* = \{ y \mid y \cdot x \leq 1 \forall x \in C \}$

$C^{**} = \{ z \mid z \cdot y \leq 1 \forall y \in C^* \}$

$x \in C \Rightarrow y \cdot x \leq 1 \forall y \in C^* \Rightarrow x \in C^{**}$

(every element of C^* lies on the ray $y \cdot x \leq 1$ with all $x \in C$

$\Rightarrow C \subseteq C^{**}$

Let $p \notin C$ (we will prove that $p \notin C^{**}$)

since C is closed and convex $\Rightarrow \exists y \in \mathbb{R}^n$

$\sup_{x \in C} y \cdot x < y \cdot p$

C contains the origin $\Rightarrow \sup_{x \in C} y \cdot x > 0$

If $\sup_{x \in C} y \cdot x > 0$ then we can scale up y

such that $y' = ay$, $a > 1 \Rightarrow y' \cdot p > 1$

$\sup_{x \in C} y' \cdot x = 1$
If \(\sup_{x \in C} y' \cdot x > 0 \) then we can scale up \(y' \) such that \(y' = a \cdot y' \), \(a > 1 \) s.t. \(y' \cdot p > 1 \) and \(\sup_{x \in C} y' \cdot x = 1 \).

If \(\sup_{x \in C} (y' \cdot x) = 0 \) then we can scale such that \(y' = a \cdot y' \), \(a > 1 \) s.t. \(y' \cdot p > 1 \) and \(\sup_{x \in C} (y' \cdot x) = 0 \).

Overall, we found \(y' \in \mathbb{R}^n \).

\[y' \cdot p > 1 \quad \text{and} \quad \sup_{x \in C} (y' \cdot x) = 1 \]

\[\Rightarrow y' \in \mathbb{R}^n \quad \Rightarrow \quad p \in C^{**} \quad \text{Eq.} \]
Dual norms

given a norm function \(\| \cdot \| : \mathbb{R}^n \to \mathbb{R} \)
the dual norm of \(\| \cdot \| \) is defined as
\[
\| y \|_{*} = \sup \{ y^T x \mid \| x \| \leq 1 \}
\]
or
\[
\| y \|_{*} = \sup \{ y^T x \mid x \in \mathcal{B} \}, \quad \mathcal{B} = \{ x \mid \| x \| \leq 1 \}
\]

\(\| \cdot \| \) measures how "big" is an element

\(\| \cdot \|_{*} \) measures how "big is the linear functional" associated with an element.
How much this linear functional can stretch elements

\[
\mathcal{B}^* = \left\{ y \mid \| y \|_{*} \leq 1 \right\} = \left\{ y \mid y^T x \leq 1 \text{ for } x \in \mathcal{B} \right\}
\]
polar set of \(\mathcal{B} \)

\(\mathcal{B} \) and \(\mathcal{B}^* \) are polar sets of each other. \(\Rightarrow \| x \|_{**} = \| x \| \) we only care about the unit circles.