Unltiplicative Lecture 10 Weight 5 Mpolete - UW U use elwu to solve - how to win ctx an dP s.+ Ax>, b C/2 X Rules of the game UWU - set of n decisions/experts - t=1,2,-.., T rosuds - in each round, we select one among the M decitions/experts by drawing from a probability distribution Pt let 19 assume we selected decision/expert i, now an adversary (or the enrivorment) reveals a loss this is equivalent to a profit

Goal: minimize the total cost
incurved by our algorithm

Line will measure the expected
total cost = <Pt/>
total cost = <Pt/>
t=1

Simplex probability

(= set of all probability
N actions or Pt ell

(Qt e Boo)

Of course we cannot hope to get a competitive algorithm when compared to the best selection of a scanence of expents,,,, even it the adversary is oblivious explanation

at every round tof the game an adversary selects randomly an action respect i Ri = -1, while i for action/expert i Ri = -1, while if j i li = 1. In this situation the only "reasonable" strategy is to also ruly "reasonable" strategy is to also rick randomly one desicion. Thus in each round our expected cost is

 $\frac{n-1}{n}(1) + \frac{1}{n}(-1) = \frac{n-2}{n}$ while the best export of the round have a cost of =1. Overall after 7 vouds me (the algorithm in cruv a cost of $\tau.(1-\frac{2}{5})$ while tle best sequence of experts "inchrs" a cost of T(-1). Alg cost - best sequence cost = $= T \left(1 - 2 - (-1) \right) = 7 \left(2 - 2 \right) = 0 (7)$

What should we compare our algorithm against? Let 15 try with the best Cixed action in aindsight!!!

=7 min = et

In order to 9020 me mill tollom a rend natural idea. Update Pt increasing the propability of actions performing well in this round and decreasing terrobability of pool actions.

MWU of good expert -> mareare

probability

Disbability Brobabilith Initialization: fie[n] Wi=1 for t=1,2,...,T do $P(t) = \sum_{i=1}^{n} w_i^{t}$ $P(t) = w_i^{t}$ $P(t) = w_i^{t}$ $P(t) = w_i^{t}$ function (2) observe loss rector lt (3) update weights => Wit = Wi(1-µli)

lineverse

probability

Ci E[-1.1.] Wie E [wi (1-m), wi (1+m)] Mer Cormance Assume l'eBo +t M=1/2. After grad su 2 bucer T $\frac{1}{2}$ $\frac{1}$ for all experts i

 $\frac{1}{2}$ $(2^{t}, p^{t}) \leq \frac{1}{2} (2^{t} + \mu_{z}) (2^{t}) + \ln \frac{1}{2} (2^{t}) + \ln \frac$ Assume all the osts are positive. Then the theorem simplifies to fixed expert

UNU = (1+4) OPT + Cun In order to be multiplicatively clore to the OPT we need to pay enn/µ.

proof idea

We will try to relate Pt, which is stored at Wit.

$$\frac{P \text{ voof}}{P^{t+1}} = \frac{1}{2} \text{ wit} = \frac{1}{2} \text{ wit} (1 - \mu \text{ li}) = \frac{1}{2} \text{ wit} = \frac{1}{$$

> (1-µ) (1+µ)

(1-µ) (1+µ)

(1-µ) × xe[0,1]

(1-µ) × xe[0,1]

(1-µ) × xe[0,1]

(1-µ) × xe[-1,0]

(1-µ) × xe[-1,0]

(1-µ) × xe[-1,0]

Since => lnn-p. uwu-cost >, \(\left(ei)^t \en(1-\mathred{\mathrea}\) - = (et) lu (1+1) => > $(-\mu-\mu^2) \leq (\ell^{\dagger})^{\dagger}$ => $lnn-\mu.Uwu_{-}(ost$ - (p-p2) \(\(\(\(\) \) => lu (1-4) >, -4-42 lu (1+4) < µ-µ2 from le Taylor expansion of ln(1+µ) Qu(1+H) = H- H22+H3-H/2+ and H=1/2

=> linn - µlwu_cox>, -µ.2lit -µ2 2llit)
=> linn - µlwu_cox > -µ.2lit + lun
=> linn - µlwu_cox > -µ.2lit + lun
p

Some observations
-The adversary is allowed to
see our probability distributions
- If life [-w,w] instead of [-1,1]
me fort run man pretending
$e^{t} = e^{t} = E - 1.0 J$

and get

Solving LPS WTING UWW
using Binary search the problem of solving au LP of the form min ctx 5-t Axx, b
$\mathcal{E}_{\mathcal{A}}$
is equivalent to ?] x s + Axxo.
We will use UWU to solve the
fearibility problem
How to do it?
Ne will use UNU to maintain a probability
distribution pt which (inturtively)
will inform us about which construct
is infeasible and needs a fix.

d high value pi should translate

to Aix-bizzo where x is our

current solution. To do so we

associate each expert with a constraint

Aix-bizzo

Let x be our current solution. 7 ben the cost of expert i is defined as Aix-bi. This way if constraint it is not satisfied (Aix-biso), UNU will increare the probability of Pi giving us a lint to what to fix... Assume now unu just calculated

Pt. We (hedp solver) are ready
to calculate a tentative solution

Xt. How do me do that? transpore

UNN cost will be (pt) Ax-(pt) b

Since at the end me want a feasible

point we will search for xt = t

Pc) Axt-(pt) b >0 ~ r fixes on average
in feasible constraints

Oracle assumption
We æssume illet given the problev
12x5+ (p) A.x-(p) b>20 replie
X>CO
eiller Dno, it is infearible
(2) veturns x's.t (2) returns x's.t (3) Ax-(P) b >> 0
aud laixti-bilewy
Now we lare all the essential ingredie
to derign au algorithm and hope that it
Morks, (P)
(1) pt gives us information on what to fi
(5) with the belp of the Ovacle we
Cix very infeatible constraints
and to the following the content work

(3) we update P to Pit to check in the constraints are doing with the new tentative solution Xt (4) we hope for the best.

UNU for dP solving

Initialize pil= 1/n fie [n]

for t=1 to T

(1) find (using the Oracle) x(t) that
satisfies < pt, Axt > > < pt, b>

xt>>0

Mixt-bilzw fie[n]

(3) calculate the new probability distribution over the experts pittle noting li.

Return X-15 xt

Tleorem (UWU as an dP solver)

det E an input parameter. Then eiller und correctly concludes flot the system is infeasible or it outputs \bar{x} s.t. $Ai\bar{x}-biz-\epsilon fic \epsilon \epsilon nJ$ width of the \bar{x} z.o

number of constraints

in $O(w^2 \log n)$ iterations.

Expressed additing error in the feasibility constraints first care: le Ovacle outputs let

<pt, Ax>- <pt, b>>>> is infearible

In this oure the dP is not fearible. Assure towards contradiction flat 3 x's+ Ax'>b flen

(pt) Ax > 2pt, b> since Pizofi which is a contradiction

second case:

By the UWU performance theorem we have that 5 < pt, et > 5 = et + m = 1et + enn + i where $Q_i^t = \frac{A_i x^t - b_i}{w}$