
## Course overview

ideas from convex geometry and convex optimization (bonged ble way me flink about algorithms

max from problem

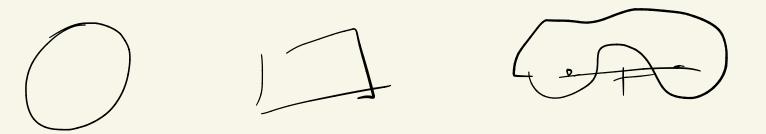


Stedures - basic fleorems separating lyperplane learners

6-14 tectures -7 and some applications

18-24 teeture) -7 convex geonetry

careelleodong leaven matroid intersection


| Couvex | 5 et 5   |
|--------|----------|
|        | <i>y</i> |

CSR<sup>n</sup> is convex off I xyc C, 05051

Dx-(1-0)y la set is convex if any two points

led lie relle red also the line between

them is contained in the set.



practical purposer euough to cleck xty

courex compination

01 x1-1...+ 0xxx x1,x2,...xx if 0170 and 01+...+0 x=1

Tet of courex combinations

Courex Courex combinations

Coure Coure C = 3 8 | x + - + 0 = x | x e C p : 70 1 s i s r , 0 | + - + 2 = 1

| Afrine set                                    |
|-----------------------------------------------|
| A set CERN is affine if for any rigeC         |
| and DER ne love 0x+(1-0)4                     |
| Différence will convex set? = menor afficient |
| affine lands  dicR                            |
| (oue)                                         |
| CERT 19 a coure il 4 x E C 107,0 0 x EC       |
| 11 11 couver coup it fore every               |
| YIXZEC DIDZYO DIXI+OZXZEC                     |

(ou (

comx (one

positive definite (M7,0) (if 7:7,0)

equivalent characterization)

() 7:7.0

() XMX7:0 FXER\*

() U=V.V for rowe URNX

() positive definite 7~7 M70)

St = (XC5)(X7.0) < 17 a convex cone

X(0,A DB)X7,0

St+ = 4X65)(X7.0)

5 emidehour programming
orthwise a live as function over the
positive semidefinite care (1 habt search
haderrecting

| Ellipsoids (important)                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Informally: Ball affine ellipsoid transformation                                                                                                       |
| B(xc,r) = dx   11x-xcll2 = r xc center<br>r madius                                                                                                     |
| Unit = Thin  Unit = Thin  Unit = Thin  Unit = Thin  Comment vectors (semi-axes)  and dring factors                                                     |
| Totaled move along the 1/2  Along the 1/2  divection                                                                                                   |
| $X \rightarrow T = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} -u_1 - 1 \\ -u_2 - 1 \end{bmatrix}$ |
| $a_{i}>0$ $T=UDU^{T}$                                                                                                                                  |
| 7'= (upu)' = (v) 1 5'. u = v 5'u                                                                                                                       |
| y c E <=> 7 'y e B => U D'uty e B =>                                                                                                                   |
| =>    w DTuTy    2 = 1 = 7 yT u DT u DT vTy = 1 =>                                                                                                     |
| $=79^{T}.U.\overline{D}.U^{T}y\leq 1$                                                                                                                  |

y u 52 u y = 1 =>  $= \left\{ \begin{array}{l} 2 \\ 2 \\ 1 \end{array} \right\} = \left\{ \begin{array}{l} 2 \\ 2 \\ 1 \end{array} \right\} = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} = \left\{ \begin{array}{l} 2 \end{array} \right\} =$ a: the move avoller representation 5trettch Z con get rufler) direction P = 5 ++ ( P= Up2UT) E = dylyTPy=1 } Note Pesy = > P=VD'VT let P'2 = V(D)'2 VT (leu gTPg = 1 => -711P12411251 E - 2 y | IIP 1/2 y | \\
\tag{1 \ta\tag{1 \tag{1 \tag{1 \tag{1 \tag{1 \tag{1 \tag{1 \tag{1 \tag{1 \t you go back to ler ball

| Wly ellipsoids?                                                                     |
|-------------------------------------------------------------------------------------|
| simple enogen objects to lieve close d                                              |
| Cour sounden sou avertrans                                                          |
| live Deiming a livear function<br>over au ellipsois                                 |
| * computing le volume                                                               |
| $\left( \bigcap_{i=1}^{n} \alpha_{i} \right), \text{ vol} \left( B_{2}^{n} \right)$ |
| deL(T)                                                                              |
| Joulir Reoven                                                                       |
| - acousting to reasonably                                                           |
| vichenspla to prevoyinate reasonably                                                |
| "well" any courex body                                                              |

Novu and norm balls 11.11:R~\_~ R+ 1) 11×11=0 iff >=0 12 11/4 11 = 1/4 11 X + EER, YER " (3) Ixy P 11x+7(1511x11+1) Common Norm? 11×1100 = monx of 1×11, ..., 1×11 200  $\|\chi\|_{\mathcal{P}} = \left(\frac{2}{12} |\chi_{i}|^{p}\right)^{p}$ R71 quadratic 11×11/4 = 1×2/4 = 11×1/2 ×1/2 norm , NE54+ given a nover me can define nuit la ll a P = 9 x 1 11 x 11 51 6 

Euclidem (sall) and selected)

Just some second cares of Navy

Just some second cares of Navy

mut land from lp (wd mill p = 1 (wd

| Couvex functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f:77-7R is convex if donf is convex<br>and fx,yedowf, DECO,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and tx, tedont peroli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| f(0x+(1-0)y) = 0 f(x) + (1-0) f(y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| strictly comex ~? = ~> <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| coucare ~7 = -> >/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 pigraph courection between ourex<br>functions and courex sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| emma $+>fm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| it couvex iff epifira comex set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| to couvex = 7 epif couvex ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{i,t_{i}}$ , $(x_{\alpha_{i}},t_{\alpha_{i}}) \in CPF$ $   1//   1//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2//   2// $ |

 $(x_{i}t_{i})_{i}$ ,  $(x_{o}t_{o}) \in exif$   $(x_{i}t_{i})_{i}$   $(x_{i}t$ 

epif (romex set =) f (romex

(xf(x)) e epif f(ax+(1-a)y) = af(x) + (1-a)f(y)=7 (ax+(1-a)y) = af(x) + (1-a)f(y)