PROBLEM 1. Show that a cascade of \(n \) identical binary symmetric channels,
\[
X_0 \xrightarrow{\text{BSC }#1} X_1 \rightarrow \cdots \rightarrow X_{n-1} \xrightarrow{\text{BSC }#n} X_n
\]
each with raw error probability \(p \), is equivalent to a single BSC with error probability
\[
\frac{1}{2}(1 - (1 - 2p)^n)
\]
and hence that \(\lim_{n \to \infty} I(X_0; X_n) = 0 \) if \(p \neq 0, 1 \). Thus, if no processing is
allowed at the intermediate terminals, the capacity of the cascade tends to zero.

PROBLEM 2. Consider a memoryless channel with transition probability matrix \(P_{Y|X}(y|x) \),
with \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \). For a distribution \(Q \) over \(\mathcal{X} \), let \(I(Q) \)
denote the mutual information between the input and the output of the channel when the input distribution is \(Q \). Show
that for any two distributions \(Q \) and \(Q' \) over \(\mathcal{X} \),
\[
\text{(a)} \quad I(Q') \leq \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x')Q'(x')} \right)
\]
\[
\text{(b)} \quad C \leq \max_x \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x')Q(x')} \right)
\]
where \(C \) is the capacity of the channel. Notice that this upper bound to the capacity
is independent of the maximizing distribution.

PROBLEM 3.

(a) Show that \(I(U;V) \geq I(U;V|T) \) if \(T, U, V \) form a Markov chain, i.e., conditional on
\(U \), the random variables \(T \) and \(V \) are independent.

Fix a conditional probability distribution \(p(y|x) \), and suppose \(p_1(x) \) and \(p_2(x) \) are two
probability distributions on \(\mathcal{X} \).

For \(k \in \{1, 2\} \), let \(I_k \) denote the mutual information between \(X \) and \(Y \) when the
distribution of \(X \) is \(p_k(\cdot) \).

For \(0 \leq \lambda \leq 1 \), let \(W \) be a random variable, taking values in \(\{1, 2\} \), with
\[
\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.
\]

Define
\[
p_{W,X,Y}(w,x,y) = \begin{cases}
\lambda p_1(x)p(y|x) & \text{if } w = 1 \\
(1 - \lambda)p_2(x)p(y|x) & \text{if } w = 2.
\end{cases}
\]

(b) Express \(I(X;Y|W) \) in terms of \(I_1, I_2 \) and \(\lambda \).

(c) Express \(p(x) \) in terms of \(p_1(x), p_2(x) \) and \(\lambda \).
(d) Using (a), (b) and (c) show that, for every fixed conditional distribution \(p_{Y|X} \), the mutual information \(I(X;Y) \) is a concave \(\cap \) function of \(p_X \).

Problem 4. Suppose \(Z \) is uniformly distributed on \([-1,1]\), and \(X \) is a random variable, independent of \(Z \), constrained to take values in \([-1,1]\). What distribution for \(X \) maximizes the entropy of \(X + Z \)? What distribution of \(X \) maximizes the entropy of \(XZ \)?

Problem 5. Random variables \(X \) and \(Y \) are correlated Gaussian variables:

\[
\begin{pmatrix}
X \\
Y
\end{pmatrix}
\sim \mathcal{N}_2\left(\begin{pmatrix}
0 \\
0
\end{pmatrix}; K = \begin{bmatrix}
\sigma_x^2 & \rho \sigma_x \sigma_y \\
\rho \sigma_x \sigma_y & \sigma_y^2
\end{bmatrix}\right).
\]

Find \(I(X;Y) \).

Problem 6. Suppose \(X \) and \(Y \) are independent geometric random variables. That is, \(p_X(k) = (1-p)^{k-1}p \) and \(p_Y(k) = (1-q)^{k-1}q \), \(\forall k \in \{1,2,\ldots\} \).

(a) Find \(H(X,Y) \).

(b) Find \(H(2X + Y, X - 2Y) \)

Now consider two independent exponential random variables \(X \) and \(Y \). That is, \(p_X(t) = \lambda_X e^{-\lambda_X t} \) and \(p_Y(t) = \lambda_Y e^{-\lambda_Y t} \), \(\forall t \in [0,\infty) \).

(c) Find \(h(X,Y) \).

(d) Find \(h(2X + Y, X - 2Y) \)