Problem 1.
(a) Let U be a random variable taking values in the alphabet \mathcal{U}, and let f be a mapping from \mathcal{U} to \mathcal{V}. Show that $H(f(U)) \leq H(U)$.

(b) Let U and V be two random variables taking values in the alphabets \mathcal{U} and \mathcal{V} respectively, and let f be a mapping from \mathcal{V} to \mathcal{W}. Show that $H(U|V) \leq H(U|f(V))$.

Problem 2.
(a) Let U and \hat{U} be two random variables taking values in the same alphabet \mathcal{U}, and let $p_e = P[U \neq \hat{U}]$. Show that $H(U|\hat{U}) \leq h(p_e) + p_e \log(|\mathcal{U}| - 1)$, where $h(p) = p \log \frac{1}{p} + (1 - p) \log \frac{1}{1 - p}$.

Hint: use the random variable $W \in \{0, 1\}$ defined by $W = \begin{cases} 1 & \text{if } U \neq \hat{U}, \\ 0 & \text{otherwise}. \end{cases}$

(b) Let U and V be two random variables taking values in the alphabets \mathcal{U} and \mathcal{V} respectively, and let f be a mapping from \mathcal{V} to \mathcal{U}. Define $p_e = P[U \neq f(V)]$. Show that $H(U|V) \leq h(p_e) + p_e \log(|\mathcal{U}| - 1)$.

Problem 3. The entropy $H(U)$ of a random variable U is a function of the distribution p_U of the random variable. Denote by $h(p)$ the entropy of a random variable with distribution p, i.e., $h(p) = \sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)}$. Let p and q be two probability distributions on the same alphabet \mathcal{U}, and, for $\theta \in [0, 1]$ let r be the probability distribution on \mathcal{U} defined by $r(u) = \theta p(u) + (1 - \theta) q(u)$

for every $u \in \mathcal{U}$. We are going to show that

$$H(r) \geq \theta H(p) + (1 - \theta) H(q).$$

(a) Let U_1 and U_2 be random variables with distributions p and q respectively. Let $Z \in \{1, 2\}$ be a binary random variable with $P(Z = 1) = \theta$. Finally define the random variable U as

$$U = \begin{cases} U_1 & \text{if } Z = 1, \\ U_2 & \text{if } Z = 2. \end{cases}$$

What is the distribution of U?

(b) Compute $H(U)$ and $H(U|Z)$. What can you conclude?

Problem 4. Consider a source U with alphabet \mathcal{U} and suppose that we know that the true distribution of U is either P_1 or P_2. Define $S = \sum_{u \in \mathcal{U}} \max\{P_1(u), P_2(u)\}$.
(a) Show that \(S \leq 2 \) and give a necessary and sufficient condition for equality.

(b) Show that there exists a prefix-free code where the length of the codeword associated to each symbol \(u \in \mathcal{U} \) is \(l(u) = \left\lfloor \log_2 \max \{ P_1(u), P_2(u) \} \right\rfloor \).

(c) Show that the average length \(\bar{l} \) (using the true distribution) of the code constructed in (b) satisfies \(H(U) \leq \bar{l} < H(U) + \log_2 S + 1 \leq H(U) + 2 \).

Now assume that the true distribution of \(U \) is one of \(k \) distributions \(P_1, \ldots, P_k \).

(d) Show that there exists a prefix-free code satisfying \(H(U) \leq \bar{l} < H(U) + \log_2 S + 1 \leq H(U) + \log_2 k + 1 \), where \(S = \sum_{u \in \mathcal{U}} \max \{ P_1(u), \ldots, P_k(u) \} \).

Problem 5. Let \((X_1, Y_1), \ldots, (X_n, Y_n)\) be \(n \) pairs of random variables which may or may not be independent. For every \(i \geq 1 \) and \(j \leq n \), define \(X^j_i \) to be the sequence \(X_1, \ldots, X_j \) if \(i \leq j \), and to be \(\emptyset \) if \(i > j \). Define \(Y^j_i \) similarly. Therefore, since \(X_{n+1}^n = Y_0^0 = \emptyset \) we have \(I(X_{n+1}^n ; Y_n) = I(Y_0^0 ; X_1) = 0 \) and \(I(Y_1^{n-1} ; X_n | X_{n+1}^n) = I(Y_1^{n-1} ; X_n) \).

(a) Show that \(I(Y_1^{n-1} ; X_n) = \sum_{i=1}^{n-1} I(X_n ; Y_i | Y_1^{i-1}) \).

(b) Show that \(\sum_{i=1}^{n} I(X_{i+1}^n ; Y_i | Y_1^{i-1}) = \sum_{i=1}^{n} I(Y_1^{i-1} ; X_i | X_{i+1}^n) \).

Problem 6. Decode the string 10010011 that was encoded using the Lempel–Ziv algorithm with alphabet set \(\mathcal{U} = \{a, l\} \).

Problem 7. Define the type \(P_x \) (or empirical probability distribution) of a sequence \(x = x_1, \ldots, x_n \) be the relative proportion of occurrences of each symbol of \(\mathcal{X} \); i.e., \(P_x(a) = N(a | x) / n \) for all \(a \in \mathcal{X} \), where \(N(a | x) \) is the number of times the symbol \(a \) occurs in the sequence \(x \in \mathcal{X}^n \).

(a) Show that if \(X_1, \ldots, X_n \) are drawn i.i.d. according to \(Q(x) \), the probability of \(x \) depends only on its type and is given by

\[
Q^n(x) = 2^{-n(H(P_x) + D(P_x || Q))}.
\]

Define the type class \(T(P) \) as the set of sequences of length \(n \) and type \(P \):

\[
T(P) = \{ x \in \mathcal{X}^n : P_x = P \}.
\]

For example, if we consider binary alphabet, the type is defined by the number of 1’s in the sequence and the size of the type class is therefore \(\binom{n}{k} \).

(b) Show for a binary alphabet that

\[
|T(P)| = 2^{nH(P)}.
\]

We say that \(a_n = b_n \), if \(\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0 \).

(c) Use (a) and (b) to show that

\[
Q^n(T(P)) = 2^{-nD(P || Q)}.
\]
Note: $D(P||Q)$ is the informational divergence (or Kullback-Leibler divergence) between two probability distributions P and Q on a common alphabet \mathcal{X} and is defined as

$$D(P||Q) = \sum_{a \in \mathcal{X}} P(a) \log \frac{P(a)}{Q(a)}.$$

Recall that we have already seen the non-negativity of this quantity in the class.