Intrication: Protocole de Codage Superdense.

Communication 2 bits classiques entre A et B en envoyant physiquement 1 bit quantique.

Il faut que A et B partagent une paire intriquée.

A Tene

B Luna.

Selon le message, A va faire au préalable faire op de mesure appropriée.
1) Une paire intriquée est partagée par A et B.

L'état de la paire est supposé être

\[|\text{Boo} \rangle = \frac{1}{\sqrt{2}} \left(|10\rangle \otimes |10\rangle + |11\rangle \otimes |11\rangle \right) \]

\[\begin{array}{cc} A & B \\ \frac{1}{2} & \frac{1}{2} \end{array} \]

2) A veut envoyer 2 bits classiques à Bob!

00 ; 01 ; 10 ; 11

On veut

a) Si envoyé 00 : A envoie le 0 à B.

et B reçoit quoi ? Il possède

l'état \(|\text{Boo} \rangle \) dans son laboratoire.

b) Si A veut envoyer 01 : tout d'abord elle applique l'unitaire \(U = X_1 \otimes I_2 \)

\[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

\[X_1 |1\rangle = |1\rangle \]

\[|1\rangle = |1\rangle \]

chez Alice
L'état $|B_{00}\rangle$ toujours partagé par A et B devient

$$X_1 \otimes I_2 \left(|B_{00}\rangle \right) = X_1 \otimes I_2 \frac{1}{\sqrt{2}} \left(|10\rangle \otimes |0\rangle + |11\rangle \otimes |1\rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left(X_1 |10\rangle \otimes I_2 |0\rangle + X_1 |11\rangle \otimes I_2 |1\rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left(|11\rangle \otimes |0\rangle + |10\rangle \otimes |1\rangle \right)$$

$$= |B_{01}\rangle.$$

Ce état est toujours partagé le moment partagé par A et B. Maintenant A envoie physiquement le plat à B qui le reçoit et qui possède donc

A $\xrightarrow{\cdots} B \otimes 2 |B_{01}\rangle$.\)
c) A veut envoyer 10 : elle applique d’abord l’unitaire
\[U = \mathbb{Z}_1 \otimes I_2 \]
det Alice Boh ne fait rien.

\[\mathbb{Z}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
\[10 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]
\[10 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]
\[11 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
\[11 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

\[\mathbb{Z}_1 \otimes I_2 |B_{100} > = \frac{1}{\sqrt{2}} \left(\mathbb{Z}_1 \otimes I_2 |10 > \otimes |10 > \\
+ \mathbb{Z}_1 \otimes I_2 |11 > \otimes |11 > \right) \]

\[= \frac{1}{\sqrt{2}} \left(|10 > \otimes |10 > - |11 > \otimes |11 > \right) \]

\[= |B_{10} > \text{ par de la troisième état de Bell} \]

Maintenant A envoie un qubit 1 à B qui le recoit et possède donc l’état de Bell \[|B_{10} > \] dans sa facture.
d) A veut envoyer le message 11 : elle clique sur son qu'hor avec l'unitaire $\mathcal{Z}_A X_A$ c. à. d.

l'état initial de départ $|\psi_{\text{IB}}\rangle$ devient :

$$|\mathcal{Z}_A X_A \otimes I_B |\psi_{\text{IB}}\rangle = \frac{1}{\sqrt{2}} \left(|2,11\rangle \otimes |0\rangle_A \otimes |1\rangle_B + |2,11\rangle \otimes |1\rangle_A \otimes |0\rangle_B \right)$$

$$= \frac{1}{\sqrt{2}} \left(- |10\rangle \otimes |10\rangle_A \otimes |11\rangle_B + |11\rangle \otimes |11\rangle_A \otimes |11\rangle_B \right)$$

$$= - \frac{1}{\sqrt{2}} \left(|10\rangle \otimes |10\rangle_A \otimes |11\rangle_B - |11\rangle \otimes |11\rangle_A \otimes |11\rangle_B \right)$$

$$= - |1B_{11}\rangle.$$

Physiquement c'est Maintenant A va envoyer son public 1 c. à. B qui le recevra et considère donc l'état $|1B_{11}\rangle$ dans sa globalité. -
Résumé:

Ops fait par A pour envoyer \((\psi) = 00; 01; 10; 11\).

00 : \(I_1 \otimes I_2 |B_{00}\rangle = |B_{00}\rangle\) \(\Rightarrow\) envoyer \(\psi_{00}\).

01 : \(X_1 \otimes I_2 |B_{00}\rangle = |B_{01}\rangle\) \(\Rightarrow\) envoyer \(\psi_{01}\).

10 : \(X_1 \otimes I_2 |B_{00}\rangle = |B_{10}\rangle\) \(\Rightarrow\) envoyer \(\psi_{10}\).

11 : \(X_1 \otimes I_2 |B_{00}\rangle = |B_{11}\rangle\) \(\Rightarrow\) envoyer \(\psi_{11}\).

3) Phase finale du protocole : Bob doit "lire" l'information à l'extrémité de 4 états possibles \((B_{00}), (B_{01}), (B_{10}), (B_{11})\).
Comment ? en faisant une mesure avec un appareil de mesure qui projette sur la base des éclipses Bell.

$$
\begin{pmatrix}
\begin{array}{cc}
C_1 & C_2 \\
& \\
\end{array}
\end{pmatrix}
\text{ dim } 2 \times 2 = 4.
$$

14 \rightarrow

$$\frac{|B_{oo}\rangle}{|B_{01}\rangle, |B_{10}\rangle, |B_{11}\rangle}$$

Application dans notre cas :

ici 14 \rangle est un des 4 éclipses Bell. Si bien que

$p_e \in |14\rangle = B_{oo} \Rightarrow \text{ prob}(00) = |< B_{oo} \mid B_{oo} >|^2 = 1$

\text{prob}(01) = 0

\text{prob}(10) = 0

\text{prob}(11) = 0.$
\[|\psi\rangle = 1 |B_0\rangle \quad \Rightarrow \quad \rho_{\text{lo}} = |<B_0|\psi\rangle|^2 = |<B_0|B_0\rangle|^2 = 1 \]

\[\rho_{\text{lo}} = \rho_{\text{lo}}^{(0)} = \rho_{\text{lo}}^{(1)} = 0 \]

Bob sait qu'il possède l'état |B₀\rangle et connait le message 01.

Bob (|ψ⟩ = 1|B₀⟩ et |B₁⟩) idem.

[Résumé du protocole de la mise en cache.]
Remarque : comment construire un appareil de mesure qui mesure dans la base du Bell.

- Supposons maintenant : base computationnelle c. à. d. $100\>,\>101\>,\>110\>,\>111\>$ par $C^2\otimes C^2$

pour les photons

appel mesure par la base computationnelle.

- Pour la base de Steel du Bell on remarque d'abord la construction suivante : $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$

$$\begin{pmatrix} CNOT \end{pmatrix} \begin{pmatrix} H \otimes I \end{pmatrix} |i\rangle \otimes |j\rangle = |B_{i,j}\rangle$$

Matrice 4×4 : opération unitaire.

CNOT $|x\rangle \otimes |y\rangle = |x\rangle \otimes |y \oplus x\rangle$ def du CNOT

Hilbert Space

$\text{mod} 2$.

Identités suivantes: \[\frac{1}{\sqrt{2}} (|\uparrow\rangle - |\downarrow\rangle) = \frac{1}{\sqrt{2}} (|\uparrow\rangle) \]

\[(\text{CNOT}) (H \otimes I) |0\rangle \otimes |10\rangle = \text{CNOT} \left\{ \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \otimes |10\rangle \right\} \]

\[= \frac{1}{\sqrt{2}} \left((\text{CNOT} |00\rangle \otimes |10\rangle + \text{CNOT} |11\rangle \otimes |10\rangle) \right) \]

\[= \frac{1}{\sqrt{2}} \left(|10\rangle \otimes |10\rangle + |11\rangle \otimes |11\rangle \right) \]

\[= |B_{00}\rangle. \]

\[(\text{CNOT}) (H \otimes I) |0\rangle \otimes |11\rangle = |B_{01}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \]

\[(\text{CNOT}) (H \otimes I) |1\rangle \otimes |10\rangle = |B_{10}\rangle = \frac{1}{\sqrt{2}} (|10\rangle - |11\rangle) \]

\[H |11\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |11\rangle) \]

\[\frac{1}{\sqrt{2}} (|\uparrow\rangle - |\downarrow\rangle) = \frac{1}{\sqrt{2}} (|\uparrow\rangle) \]

\[(\text{CNOT}) (H \otimes I) |1\rangle \otimes |11\rangle = |B_{11}\rangle = \frac{1}{\sqrt{2}} (|100\rangle - |111\rangle). \]
\[|i\rangle \rightarrow |\text{Cnot} \rangle \rightarrow |13ij\rangle \]

\[i, j \in \{0, 1, 2, 3\} \]

Crystal Na.
Aspects des états de Bell lorsque l'on fait des mesures. Faites localement et séparément chez A et B.

- aucune communication entre A et B.

⇒ A et B ne peuvent absolument pas détruire l'intrication de l'état de Bell.

\[
\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)
\]

a) Alice fait une mesure et Bob fait une mesure après ...
b) Bob "..." et Alice "..." ...
c) Alice et Bob font leurs mesures simultanément ...
(a) À mesure d'abord et \(B \) ensuite après.

\[\{ |\alpha\rangle, |\alpha_\perp\rangle \} \quad \{ |\beta\rangle, |\beta_\perp\rangle \} \]

Rappel pour linéaire

\[|\gamma\rangle = \cos \gamma |\alpha\rangle + \sin \gamma |\beta\rangle \]

\[|\gamma_\perp\rangle = -\sin \gamma |\alpha\rangle + \cos \gamma |\beta\rangle \]

Chez Alice : le photon va être projeté sur les états de base

\[|\alpha\rangle \quad \text{ou} \quad |\alpha_\perp\rangle \]

\[\text{prob} \ \frac{\sqrt{2}}{2} \quad \text{prob} \ \frac{\sqrt{2}}{2} \]

\[|\beta_{\alpha\beta}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \equiv \frac{1}{\sqrt{2}} (|\alpha\beta_\perp\rangle + |\beta\beta_\perp\rangle) \]

vérifier par coliné \(|\alpha\rangle \otimes |\beta\rangle\).
Par calcul: projecteurs associés à l'opération de mesure

\[|\alpha\rangle \langle \alpha | \otimes I_\mathcal{B} \quad \text{et} \quad |\alpha\rangle \langle \alpha | \otimes I_\mathcal{B}, \]

\[\text{projecteur } \mathcal{A} \]

\[\text{état après la mesure d'} \text{Alice:} \]

\[(\psi) \langle \alpha | \otimes \mathcal{I} \rangle _{\mathcal{B}_{\text{env}}}) = |\alpha\rangle \langle \alpha | \otimes \mathcal{I} \]

\[\frac{1}{\sqrt{2}} (|\alpha \rangle \langle \alpha |) \]

\[\text{après normalisation} \]

\[|\alpha\rangle \otimes |\alpha\rangle \]

\[\text{état de la mesure} \]

\[\text{Remarque: en } \mathcal{B} \text{ il possède une part de la pain mais ne sait pas l'état de son photon. car } \mathcal{B} \text{ n'a pas encore fait d'oh.} \]

\[|\alpha\rangle \otimes |\alpha\rangle \]

\[\text{et aussi} \]

\[\text{chef } \mathcal{A} \quad \text{chef } \mathcal{B}. \]
\[\text{prob} = | \langle \text{état final} | \text{état initial} \rangle |^2. \]

\[\langle \text{état final} \rangle = 1|x\rangle \otimes |x\rangle. \]

\[\text{prob} = \left| \langle x|0 \otimes x|0 \rangle \frac{1}{\sqrt{2}} \left(|x\rangle \otimes |x\rangle + |x\rangle \otimes |x\rangle \right) \right|^2. \]

\[= \frac{1}{2}. \]

\[\langle \text{état final} \rangle = 1|x\rangle \otimes |x\rangle. \]

\[\text{prob} = \frac{1}{2}. \]

Bob fait sa mesure avec Alice:

\[\uparrow \text{base } \{ |\beta\rangle, |\beta\rangle \} \]

son état final sera \(|\beta\rangle\text{ ou }|\beta\rangle\text{.} \text{ Mais qu'elle est la probabilité?} \]
\[
\text{prob (} |\beta \rangle \text{ chez } B) = \text{prob (} |\alpha \rangle \rightarrow |\beta \rangle \mid \text{chez } A |\alpha \rangle \rangle \cdot \frac{1}{2}
\]

\[\text{transition chez Bob = }
\]

\[\text{prob (} |\alpha \rangle \rightarrow |\beta \rangle \mid \text{chez } A |\alpha \rangle \rangle \cdot \frac{1}{2}
\]

\[= \text{prob (} |\alpha \rangle \rightarrow |\beta \rangle \mid \text{chez } A |\alpha \rangle \rangle \cdot \frac{1}{2}
\]

\[= \frac{1}{2}
\]

\[
\text{prob (} |\beta \rangle \text{ chez } B) = (\cos (\beta - \alpha))^2 \frac{1}{2} + (\sin (\beta - \alpha))^2 \frac{1}{2}
\]

\[= \frac{1}{2}
\]

\[
\text{prob (} |\beta \rangle \text{ chez } B) = \frac{1}{2}
\]

Satisfaisant!

\[b) \ B \text{ fait les avant et A fait les opérations.}
\]

\[
\begin{pmatrix}
|\alpha \rangle & |\beta \rangle & |\alpha \rangle & |\beta \rangle \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\]

\[7 \quad 7
\]

\[\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2}
\]
c) A et B sont la mesure simultanément.

\[\{|\alpha\rangle, |\beta\rangle\} \quad \{|\gamma\rangle, \gamma_\perp\rangle\} \]

La base totale dans l'espace hilbertien \(C^2 \otimes C^2 \):

\[|\alpha\rangle \otimes |\beta\rangle ; \quad |\alpha\rangle \otimes |\gamma\rangle_\perp ; \quad |\alpha\rangle_\perp \otimes |\beta\rangle ; \quad |\alpha\rangle_\perp \otimes |\gamma\rangle_\perp \]

\(\{B_{\alpha\beta}\} \) où le mesuré est projeté sur un des 4 états.

Par calcul on montre la proba: \(\frac{1}{3} \)

\[\rho = \left| \langle \alpha | \otimes \langle \beta | B_{\alpha\beta} \rangle \right|^2 = \frac{1}{3} \]

\[\left| \langle \alpha | \otimes \langle \beta_\perp | B_{\alpha\beta} \rangle \right|^2 = \frac{1}{3} \]

idem

idem.

Calcul à faire comme exercice

On revoit cela la semaine prochaine.
\[\text{Prob} (x, \beta) = \frac{1}{2} \]

\[\text{Prob} (x, \beta_2) = \frac{1}{2} \]

\[\text{Prob} (x_1, \beta) = \frac{1}{2} \]

\[\text{Prob} (x_1, \beta_2) = \frac{1}{2} \]

\[\frac{\alpha_1}{\alpha_2} \]

\[\frac{\alpha_2}{\alpha_3} \]

\[\alpha_1 = \frac{1}{2} \]

\[\text{Prob} (\text{chez } A ; x) = \text{Prob} (x, \beta) + \text{Prob} (x, \beta_2) \]

\[= \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \]

\[\text{Prob} (\text{chez } B ; \beta) = \text{Prob} (x; \beta) + \text{Prob} (x_1; \beta) \]

\[= \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \]

En résumé, nous avons prouvé ici que l'on des mesures A et B obtenues tous angles \(x, x_1 \) ou \(\beta, \beta_1 \) tournant avec \(\text{Prob} \frac{1}{2} \), quelque l'endroit de mesure.

"Les angles au spectre de l'Atome sont la plus uniforme possible et la structure intriquée de 1300) n'est pas découverte."