ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Learning Theory Assignment date: June 24th, 2019, 12:15 Spring 2019 Due date: June 24th, 2019, 15:15

Final Exam - CS 526 - CE4

There are 4 general problems and 4	4 multiple choice que	estions. Good luck!
Name:		
Section:		
Sciper No.:		

Problem 1	/ 20
Problem 2	/ 20
Problem 3	/ 20
Problem 4	/ 20
Problem 5: MCQ	/ 20
Total	/100

Problem 1. VC Dimension (20 pts)

In this problem we consider hypothesis functions from \mathbb{R}^2 to $\{0,1\}$. We have seen in the homework that $VCdim(\mathcal{H}_{rec}) = 4$, where \mathcal{H}_{rec} is the class of all rectangles in \mathbb{R}^2 . Let us see some other examples.

- 1. (10 pts) (Circles) Let $\mathcal{H}_1 = \{h_C(\mathbf{x})\}$ with $h_C(\mathbf{x}) = \mathbb{I}(\mathbf{x} \text{ is inside the circle } C)$, where a circle C is determined by a center and a radius.
 - (a) (3 pts) What is $VCdim(\mathcal{H}_1)$? Call your answer d_1 .
 - (b) (3 pts) Show that $VCdim(\mathcal{H}_1) \geq d_1$. (Hint: You can propose an instance of d_1 points and for each labelling draw the valid circle.)
 - (c) (4 pts) Show that $VCdim(\mathcal{H}_1) \leq d_1$. Hint: You should consider two cases:
 - \bullet one of the points \mathbf{x} is in the convex hull of the other points; OR
 - none of the points is in the convex hull of the other points.

A formal proof might be difficult. It will suffice if you give us a "convincing" argument.

2. (10 pts)(Unbiased neurons) Let $\mathcal{H}_2 = \{h_{\alpha_1,\alpha_2}(\mathbf{x}) : \alpha_1,\alpha_2 \in \mathbb{R}\}$ with

$$h_{\alpha_1,\alpha_2}(\mathbf{x}) = \mathbb{I}(\tanh(\alpha_2 x_2 + \alpha_1 x_1) > 0).$$

- (a) (3 pts) What is $VCdim(\mathcal{H}_2)$? Call your answer d_2 .
- (b) (3 pts) Show that $VCdim(\mathcal{H}_2) \geq d_2$.
- (c) (4 pts) Show that $VCdim(\mathcal{H}_2) \leq d_2$.

Problem 2. GD and SGD (20 pts)

1. (15 pts) Consider the Least Squares optimization problem:

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}),$$

where $f(\mathbf{x}) = \frac{1}{2}||A\mathbf{x} - \mathbf{b}||_2^2$, $b \in \mathbb{R}^m$. We assume that A is a full column rank matrix in $\mathbb{R}^{m \times n}$, $n \leq m$, and that there exists a solution to the linear system $A\mathbf{x} = \mathbf{b}$. Let σ_{\max} and σ_{\min} be the largest and the smallest singular values of A and consider the gradient descent method

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$$

with a fixed step size $\alpha = 1/\sigma_{\max}(A)^2$.

- (a) (5 pts) Show that $\sigma_{\max}(I \alpha A^T A) = 1 \alpha \sigma_{\min}(A)^2 = 1 \frac{\sigma_{\min}(A)^2}{\sigma_{\max}(A)^2}$.
- (b) (5 pts) Calculate the gradient $\nabla f(\mathbf{x})$ and rewrite the GD using this gradient.
- (c) (5 pts) Show that the procedure converges as

$$||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 \le (1 - \frac{\sigma_{\min}(A)^2}{\sigma_{\max}(A)^2})||\mathbf{x}^t - \mathbf{x}^*||_2.$$

2. (5 pts) Let us now consider the SGD. In this case one can show a convergence of the form

$$\mathbb{E}[||\mathbf{x}^{t+1} - \mathbf{x}^*||_2^2] \le (1 - \frac{\sigma_{\min}(A)^2}{||A||_E^2}) \mathbb{E}[||\mathbf{x}^t - \mathbf{x}^*||_2^2]$$

where $||A||_F$ is the Frobenius norm. How does this compare to GD? Which is better?

Problem 3. Probabilistic graphical models (20 pts)

Let X_t , t = 0, 1, 2 a random walk on the state space \mathbb{Z} (Markov chain) with initial distribution $\mathbb{P}(X_0)$ and transition probability $\mathbb{P}(X_{t+1} = i+1 | X_t = i) = p$, $\mathbb{P}(X_{t+1} = i-1 | X_t = i) = 1-p$, and zero otherwise (here $0). We suppose that we have "observations" <math>Y_t$ of the state at time t given by the output of an additive Gaussian noise channel:

$$Y_t = X_t + \sigma \xi_t, \qquad t = 0, 1, 2$$

where $\xi_t \sim \mathcal{N}(0,1)$ is Gaussian of mean zero and variance 1. The setting corresponds to the belief network of a Hidden Markov Model (Figure 1).

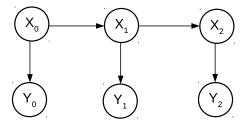


Figure 1: Belief Network

- 1. (4 pts) Write down the joint probability distribution of the whole belief network.
- 2. (4 pts) Are Y_0 and Y_2 independent random variables when conditioned on X_1 ? Are they independent when we do not condition? (no calculation but justification required).
- 3. (2 pts) Convert the belief network to a Markov Random Field and identify the maximal cliques, the corresponding factors, and the normalization factor Z.
- 4. (2 pts) From now on we initialize the Markov chain at time t = 0 with $X_0 = 0$. What is the initial distribution $\mathbb{P}(X_0)$? And what is the effective alphabet (or possible values) of the random variables X_1 , X_2 , Y_1 , Y_2 , Y_3 ?
- 5. For this question the initialization is again $X_0 = 0$. We consider the Factor Graph representation of Figure 2.
 - a) (6 pts) Set up the message passing equations and compute the marginal $\mu(Y_2)$ from those (see the recap of message passing equations below if needed). Express the result explicitly in terms of p and σ .
 - b) (2 pts) Do you think this calculation gives the exact marginal? Say why.

RECAP: Message passing equations for a general factor graph model $p(\mathbf{x}) \propto \prod_a f_a(\{x_j : j \in \partial a\})$:

$$\mu_{i \to a}(x_i) = \prod_{b \in \partial i \setminus a} \mu_{b \to i}(x_i), \qquad \mu_{a \to i}(x_i) = \sum_{x_j : j \in \partial a \setminus i} f_a(\{x_j, j \in \partial a\}) \prod_{j \in \partial a \setminus i} \mu_{j \to a}(x_j)$$

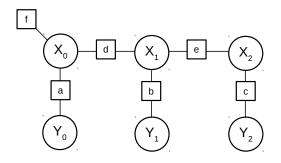


Figure 2: Factor Graph

A leaf node is initialized with $\mu_{i\to a}(x_i)=1$ and marginals are given by $\mu_i(x_i)\propto \prod_{a\in\partial i}\mu_{a\to i}(x_i)$.

Problem 4. Tensor methods (20 pts)

Let $[\mu_1, \dots, \mu_k]$ a set of k linearly independent column vectors of dimension n (with real components). We will assume throughout that these vectors have unit norm. Set

$$T_2 = \sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i, \qquad T_3 = \sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i$$

where w_i , $i = 1, \dots, k$, are real nonzero values.

We are given the arrays of components $T_2^{\alpha\beta}$, $T_3^{\alpha\beta\gamma}$, $\alpha, \beta, \gamma \in \{1, \dots, n\}$ and want to determine w_1, \dots, w_k and $[\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k]$. This problem guides you through a method that uses the simultaneous diagonalization of appropriate matrices.

The following multilinear transformation of T_3 will be used

$$T_3(I, I, \mathbf{u}) = \sum_{i=1}^k w_i(\boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i)(\mathbf{u}^T \boldsymbol{\mu}_i)$$

where I denotes the identity matrix and \mathbf{u} an n-dimensional real column vector, \mathbf{u}^T the transposed vector.

- 1. (7 pts) Let $V = [\boldsymbol{\mu}_1, \cdots, \boldsymbol{\mu}_k]$ a square matrix. Show that $T_2 = V \operatorname{Diag}(w_1, \cdots, w_k) V^T$, $T_3(I, I, \mathbf{u}) = V \operatorname{Diag}(w_1, \cdots, w_k) \operatorname{Diag}(\mathbf{u}^T \boldsymbol{\mu}_1, \cdots, \mathbf{u}^T \boldsymbol{\mu}_k) V^T$ where $\operatorname{Diag}(a_1, \cdots, a_k)$ is the diagonal matrix with a_i 's on the diagonal.
- 2. (2 pts) Now we specialize to n = k. Why is T_2 an invertible matrix?
- 3. We choose **u** from a continuous distribution over \mathbb{R}^n . Still in the case n = k.
 - a) (7 pts) Explain how to uniquely recover almost surely the set of μ_i 's from the matrix

$$M = T_3(I, I, \mathbf{u})T_2^{-1}$$

using standard linear algebra methods.

b) (4 pts) How do you then recover the w_i 's?

Problem 5. Multiple choice questions (20 pts)

Circle the correct answers. No justification required

- 1. (5 pts) [Several correct answers possible.] Let $\mathcal{H} = \{h_{\theta}\}_{{\theta} \in \Theta}$ be a hypothesis class such that $VCdim(\mathcal{H}) = +\infty$. Then the set of parameters Θ :
 - A. is finite.
 - B. can be countable.
 - C. can be uncountable.
 - D. can be finite, countable or uncountable.
- 2. (5 pts) [Several correct answers possible.] Let $(x_i, y_i) \in \mathbb{R} \times \{0, 1\}$ for $i \in \{1, \dots, n\}$. Let $\hat{y}_i(w) = 1/(1 + e^{-wx_i})$. Define

$$f: w \in \mathbb{R} \mapsto -\sum_{i=1}^{n} \left[y_i \log(\hat{y}_i(w)) + (1 - y_i) \log(1 - \hat{y}_i(w)) \right] + \lambda |w|,$$

where $\lambda > 0$. The function f is:

- A. convex.
- B. differentiable everywhere.
- C. subdifferentiable everywhere.
- D. Lipschitzian.
- 3. (5 pts) [Single correct answer.] According to the Hammersley-Clifford theorem the MRF property for a probability distribution $p(\mathbf{x}) > 0$ implies

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{\text{maximal cliques } C} \psi_C(\{x_i, i \in C\})$$

where $\psi_C(\{x_i, i \in C\}) > 0$ and Z is the normalization factor. This decomposition is unique (up to the absorption of Z into factors):

- A. always.
- B. never.
- C. only when the MRF comes from a Belief Network.
- D. only if the graph of the MRF is a tree.

4. (5 pts) [Single correct answer.] Let $w_i(\epsilon)$, $i = 1, \dots, K$ be continuous functions of $\epsilon \in [0, 1]$. Let also $[\mathbf{a}_1 + \epsilon \mathbf{a}'_1, \dots, \mathbf{a}_K + \epsilon \mathbf{a}'_K]$, $[\mathbf{b}_1 + \epsilon \mathbf{b}'_1, \dots, \mathbf{b}_K + \epsilon \mathbf{b}'_K]$, $[\mathbf{c}_1 + \epsilon \mathbf{c}'_1, \dots, \mathbf{c}_K + \epsilon \mathbf{c}'_K]$ be $N \times K$ rank-K matrices for all ϵ . Consider the tensor

$$T(\epsilon) = \sum_{i=1}^{K} w_i(\epsilon) \left(\mathbf{a}_i + \epsilon \mathbf{a}_1' \right) \otimes \left(\mathbf{b}_i + \epsilon \mathbf{b}_1' \right) \otimes \left(\mathbf{c}_i + \epsilon \mathbf{c}_1' \right)$$

- A. The tensor rank always equals K for all $\epsilon \in [0, 1]$.
- B. The tensor rank equals K for all $\epsilon \in [0,1]$ such that $w_i(\epsilon) \neq 0, i = 1, \dots, K$.
- C. When we take a limit $\lim_{\epsilon \to 0} T(\epsilon)$ it may happen that the tensor rank of the limit is K+1.
- D. If we replace the assumption that $[\mathbf{c}_1 + \epsilon \, \mathbf{c}'_1, \cdots, \mathbf{c}_K + \epsilon \, \mathbf{c}'_K]$ is rank K, by the assumption that these vectors are pairwise independent, then the tensor rank can never be K whatever we assume for $w_i(\epsilon)$, $i = 1, \dots, K$.