Problem 1. Consider the following convolutional code which takes k input bits and encodes it into $2k$ codeword bits.

$$(b[i], b[i - 1], b[i - 2]) \rightarrow x[2i] = b[i]b[i - 2]$$

$$(b[i], b[i - 2]) \rightarrow x[2i + 1] = b[i]b[i - 1]b[i - 2]$$

For a given input bit sequence b, we will refer to the corresponding codeword as $x(b)$.

In this problem, we will study what happens when the $b[i]$'s are not generated uniform i.i.d., but by Markov source,

$$P(b[i + 1] = q | b[i] = r) = \begin{cases} 1 - \alpha & q = r \\ \alpha & q \neq r \end{cases} \quad \text{if } i > 0$$

$$P(b[0] = 1) = 1 - \alpha.$$

We will always assume that the convolutional code starts with memory 1, 1.

We assume that the convolutional code is used over a BSC(δ), i.e., the channel with the following transition probability,

$$P(y[i] = 1 | x[i] = 1) = P(y[i] = -1 | x[i] = -1) = 1 - \delta$$

$$P(y[i] = -1 | x[i] = 1) = P(y[i] = 1 | x[i] = -1) = \delta$$

where $y[i]$'s are the received sequence.

a) With B and Y denoting the input bit sequence and the channel output, show that

$$P(B = b, Y = y)$$

can be determined from integers f and d where $f = \sum_i \mathbb{1}\{b[i] \neq b[i - 1]\}$ (for convenience $b[-1] = 1$) is the number of transitions in the input bits and $g = \sum_i \mathbb{1}\{y[i] \neq x(b)[i]\}$ is the number of channel errors required to produce y.

b) Using (a), describe how to assign the edge labels of the trellis diagram so that the Viterbi algorithm will perform the MAP decoding.

Due to the non-uniform prior, the bit error probability for this code depends on the transmitted sequence.
c) Consider a binary hypothesis testing problem with observation Y, show that the probability of error under MAP decoder \hat{H} satisfies the following bound,

$$P(\hat{H} = 1 \mid H = -1) \leq \sqrt{\frac{P(H = 1)}{P(H = -1)}} Z$$

where Z is the Bhattacharyya parameter, i.e., $Z = \sum_y \sqrt{P_{Y|H}(y|1)P_{Y|H}(y|-1)}$.

d) Consider any input bit sequence b', show that the MAP decoder $\hat{b}(y)$ fulfills

$$P(\hat{b}(y) = b' \mid \forall_i b[i] = 1) \leq (2\sqrt{\delta(1-\delta)})^d \sqrt{\frac{\alpha}{1-\alpha}} f'$$

where $f' = \sum_i \mathbb{1}\{b'[i] \neq b'[i-1]\}$ (for convenience $b'[-1] = 1$) and $d = \sum_i \mathbb{1}\{x(b')[i] \neq 1\}$.

e) We will specifically study the bit error probability of the case where $b[i] = 1$ for all $i \geq 0$. We will refer to this bit error probability as P_{e1}. Show that

$$P_{e1} \leq \left. \frac{\partial T(I, D, F)}{\partial I} \right|_{I=1, D=2\sqrt{\delta(1-\delta)}, F=\sqrt{\alpha/(1-\alpha)}}$$

where $T(I, D, F)$ is the generating function defined as

$$T(I, D, F) = \sum_{h \in \text{Detour}} I^i_h D^{d_h} F^{f_h}.$$

In the generating function above, i_h is the number of bit differences between the detour’s input bits and reference input bits, d_h is the number of -1’s in the output sequence of the detour path, and f_h is the number of input bit transitions in the detour path.
Problem 2. Consider a “recursive” convolutional encoder that is described in the following diagram:

Formally, the system at time i is described by a state $s[i] = (\alpha[i], \beta[i]) \in \{+1, -1\}^2$ (the contents of the boxes) with $s[0] = (+, +)$ and evolution

$$\alpha[i + 1] = b[i]\beta[i]$$
$$\beta[i + 1] = \alpha[i]$$

for $i > 0$. The encoder’s output is given by

$$x[2i] = b[i]\alpha[i]\beta[i]$$
$$x[2i + 1] = b[i]\beta[i].$$

Note that if “all +” bit sequence is input to the encoder, the output is the “all +” encoded sequence.

a) Complete the diagram below by drawing the edges (labeled by “$b[i] \mid x[2i], x[2i + 1]$”) between states (labeled by (α, β)’s).
b) Draw a generic segment of the trellis diagram that corresponds to the state diagram you just found.

c) Suppose $b[0], \ldots, b[k - 1]$ are k data bits. How should one choose dummy bits $b[k]$ and $b[k + 1]$ to ensure that the machine returns to the initial state $++$?

d) Suppose the $x[i]$’s are sent over a channel whose output $y[i]$ is given by $x[i] + Z[i]$ where $Z[0], Z[1], \ldots$ are i.i.d. $N(0, \sigma^2)$. Describe how you would find the MAP estimate of $b[0], \ldots, b[k - 1]$, from $y[0], \ldots, y[2k + 3]$, assuming that $b[k]$ and $b[k + 1]$ are chosen as in (c).

e) Complete the following detour graph by drawing the missing edges and labelling each edges with labels of the form “$I^i D^d$” where the power of I represents the “input distance” from the “all +” data bit sequence and the power of d represents the “output distance” from the “all +” encoded bit sequence.

\[D \]

\[
\begin{array}{cccc}
++s & ++ & ++e \\
| & + & \| \\
- & - & - \\
\end{array}
\]

f) Compute the transfer function $T(I, D)$ from $++s$ to $++e$.