Note: The tensor product is denoted by \(\otimes \). In other words, for vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) we have that \(\mathbf{a} \otimes \mathbf{b} \) is the square array \(a^\alpha b^\beta \) where the superscript denotes the components, and \(\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c} \) is the cubic array \(a^\alpha b^\beta c^\gamma \). We often denote components by superscripts because we need the lower index to label vectors themselves.

Problem 1: A multiple choice question

Find the correct answer(s).

Let \(w_i(\epsilon) \) for \(i \in \{1, \ldots, K\} \) be continuous functions of \(\epsilon \in [0, 1] \). Suppose that for all \(\epsilon \in [0, 1] \) the \(N \times K \) matrices \(\begin{bmatrix} a_1 + \epsilon a'_1 & \cdots & a_K + \epsilon a'_K \end{bmatrix}, \begin{bmatrix} b_1 + \epsilon b'_1 & \cdots & b_K + \epsilon b'_K \end{bmatrix} \) and \(\begin{bmatrix} c_1 + \epsilon c'_1 & \cdots & c_K + \epsilon c'_K \end{bmatrix} \) have rank \(K \). Consider the tensor

\[
T(\epsilon) = \sum_{i=1}^{K} w_i(\epsilon) (a_i + \epsilon a'_i) \otimes (b_i + \epsilon b'_i) \otimes (c_i + \epsilon c'_i) .
\]

(A) The tensor rank equals \(K \) for all \(\epsilon \in [0, 1] \).

(B) The tensor rank equals \(K \) for all \(\epsilon \in [0, 1] \) such that \(\forall i \in \{1, \ldots, K\} : w_i(\epsilon) \neq 0 \).

(C) It may happen that the tensor rank of the limit \(\lim_{\epsilon \to 0} T(\epsilon) \) is \(K + 1 \).

(D) If we replace the assumption that \(\begin{bmatrix} c_1 + \epsilon c'_1 & \cdots & c_K + \epsilon c'_K \end{bmatrix} \) is rank \(K \) by the assumption that these vectors are pairwise independent, then the tensor rank can never be \(K \) whatever the assumptions on \(w_i(\epsilon), i = 1, \ldots, K \).

Problem 2: A simultaneous diagonalization method for tensor decomposition

Let \(\{\mathbf{a}_1, \ldots, \mathbf{a}_k\} \) a set of \(k \) linearly independent column vectors of dimension \(n \) (with real components). We will assume throughout the problem that these vectors have unit norms.

Set

\[
T_2 = \sum_{i=1}^{k} w_i \mathbf{a}_i \otimes \mathbf{a}_i , \quad T_3 = \sum_{i=1}^{k} w_i \mathbf{a}_i \otimes \mathbf{a}_i \otimes \mathbf{a}_i ,
\]

where \(w_i, i = 1, \ldots, k, \) are nonzero real numbers.

We are given the arrays of components \(T_2^{\alpha \beta}, T_3^{\alpha \beta \gamma} \), \(\alpha, \beta, \gamma \in \{1, \ldots, n\} \) and want to determine \(w_1, \ldots, w_k \) as well as \(\{\mathbf{a}_1, \ldots, \mathbf{a}_k\} \). This problem guides you through a method that uses the simultaneous diagonalization of appropriate matrices to do so.

The following multilinear transformation of \(T_3 \) will be used:

\[
T_3(I, I, \mathbf{u}) = \sum_{i=1}^{k} w_i (\mathbf{a}_i \otimes \mathbf{a}_i) (\mathbf{u}^T \mathbf{a}_i) ,
\]
where I denotes the identity matrix and \mathbf{u} is an n-dimensional real column vector (\mathbf{u}^T is its transpose).

1. Define the $n \times k$ matrix $V = [\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_k]$. Show that

$$T_2 = V \text{Diag}(w_1, \ldots, w_k)V^T$$

$$T_3(I, I, \mathbf{u}) = V \text{Diag}(w_1, \ldots, w_k)\text{Diag}(\mathbf{u}^T\mathbf{a}_1, \ldots, \mathbf{u}^T\mathbf{a}_k)V^T$$

where $\text{Diag}(x_1, \ldots, x_k)$ is the diagonal matrix with x_i's on the diagonal.

2. Now we specialize to the case $n = k$. Why is T_2 an invertible matrix?

3. We choose \mathbf{u} from a continuous distribution over \mathbb{R}^n. Still in the case $n = k$.

 a) Explain how you can almost surely recover the set of $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ (up to a plus or minus sign in front of the \mathbf{a}_i's) from the matrix

$$M = T_3(I, I, \mathbf{u})T_2^{-1}$$

using standard linear algebra methods.

 b) How do you then recover the w_i's?

Problem 3: Kronecker, Khatri-Rao, Hadamard products: check useful identities

We recall a few definitions seen in class. The Kronecker product of two column vectors $\mathbf{b} \in \mathbb{R}^I$ and $\mathbf{c} \in \mathbb{R}^J$ is the column vector:

$$\mathbf{c} \otimes_{\text{Kro}} \mathbf{b} \triangleq [c_1\mathbf{b}^T \ c_2\mathbf{b}^T \ \cdots \ c_J\mathbf{b}^T]^T.$$

The Kronecker product of two row vectors \mathbf{d} and \mathbf{e} is the row vector:

$$\mathbf{d} \otimes_{\text{Kro}} \mathbf{e} \triangleq [d_1\mathbf{e} \ d_2\mathbf{e} \ \cdots \ d_J\mathbf{e}] .$$

The Khatri-Rao product of two matrices $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_R] \in \mathbb{R}^{I \times R}$ and $C = [\mathbf{c}_1 \ \mathbf{c}_2 \ \cdots \ \mathbf{c}_R] \in \mathbb{R}^{J \times R}$ is the $(IJ) \times R$ matrix:

$$C \otimes_{\text{Khr}} B \triangleq [\mathbf{c}_1 \otimes_{\text{Kro}} \mathbf{b}_1 \ \cdots \ \mathbf{c}_R \otimes_{\text{Kro}} \mathbf{b}_R] .$$

Finally, the Hadamard product of two matrices (of same dimensions) is the matrix given by the point-wise product of components, i.e. if A, B have matrix elements a_{ij} and b_{ij} then the Hadamard product $A \circ B$ has matrix elements $a_{ij}b_{ij}$.

Let $\mathbf{b}, \mathbf{d} \in \mathbb{R}^I$ and $\mathbf{c}, \mathbf{e} \in \mathbb{R}^J$ be column vectors. Let $B, D \in \mathbb{R}^{I \times R}$ and $C, E \in \mathbb{R}^{J \times R}$ be four matrices. Check the following identities used in class:

$$(\mathbf{c} \otimes_{\text{Kro}} \mathbf{b})^T = \mathbf{c}^T \otimes_{\text{Kro}} \mathbf{b}^T ;$$

$$(\mathbf{e} \otimes_{\text{Kro}} \mathbf{d})^T (\mathbf{c} \otimes_{\text{Kro}} \mathbf{b}) = (\mathbf{e}^T \mathbf{c})(\mathbf{d}^T \mathbf{b}) ;$$

$$(E \otimes_{\text{Khr}} D)^T (C \otimes_{\text{Khr}} B) = (E^T C) \circ (D^T B) .$$

2