Suite de l'analyse du circuit de l'algorithme :

\[H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \text{ pour } i = 1, \ldots, k. \]

\[H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle). \]

\[\mathcal{U}_f \left(|x\rangle \otimes |0\rangle \right) = |x\rangle \otimes |f(x)\rangle \]

\[\text{produit tensoriel du}
\]

\[|x_{m-1}\rangle \otimes \cdots \otimes |x_0\rangle \]

\[\text{quibits d'une base,}
\]

\[\text{du dér binaire } \text{def}(x) \]

\[\text{QFT } |x\rangle = \frac{1}{\sqrt{2^m}} \sum_{\alpha=0}^{2^m-1} e^{\frac{2\pi i x \alpha}{2^m}} |\alpha\rangle \]

\[|x\rangle \otimes \cdots \otimes |0\rangle \]
\[\text{État initial : } 10 > \otimes 10 > \otimes 10 > \otimes 10 > \quad \text{en qubits} \]

\[\text{après la } i \text{ème série de portes } H : \]

\[H |10 > \otimes \cdots \otimes H|10 > \otimes 10 > \otimes \cdots \otimes 10 > \]

\[= \frac{1}{\sqrt{2}} (|00 > + |11 >) \otimes \cdots \otimes \frac{1}{\sqrt{2}} (|00 > + |11 >) \otimes 10 > \otimes \cdots \otimes 10 > \]

\[= \frac{1}{\sqrt{2}} \sum_{x_0 \cdots x_{m-1}} 1x_{m-1} > \otimes 1x_{m-2} > \otimes \cdots \otimes 1x_0 > \otimes 10 > \otimes \cdots \otimes 10 > \]

\[= \frac{1}{\sqrt{M}} \sum_{x = 0}^{M-1} 1x > \otimes 10 > \]

\[(M = 2^m) \]

\[\text{Non appliquons } U_f \text{ à ce qui donne} \]

\[U_f \left(\frac{1}{\sqrt{M}} \sum_{x = 0}^{M-1} 1x > \otimes 10 > \right) = \frac{1}{\sqrt{M}} \sum_{x = 0}^{M-1} U_f (1x > \otimes 10 >) \]

\[1x > \otimes 1f(x) > \]
état du circuit quantique après l'opération U_P:

$$
\frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} |x\rangle \otimes |f(x)\rangle.
$$

Maintenant, utilisons la structure périodique de f.

(Cauchy à l'algèbre de Cima).

$$
f(x) = f(x+r)
$$

$(x_0, j=0)$

\begin{align*}
0 & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \\
\vdots & \quad \vdots
\end{align*}

\begin{align*}
\{j \in \mathbb{N} : 0 \leq j \leq j_{\text{max}}(x_0)\} \quad & \quad \{0, 1, 2, \ldots, r-1\} \\
0 \leq j \leq j_{\text{max}}(x_0) \quad & \quad j_{\text{max}}(x_0) = 3
\end{align*}

Notation traditionnelle.

$$
j_{\text{max}}(x_0) = A(x_0) - 1.
$$

La max possible de j dépend de x_0.

\begin{align*}
\text{pour} \quad j_{\text{max}}(x_0) & = 3, \\
\text{cas} \quad j_{\text{max}}(x_0) & = 2, \\
\text{cas} \quad j_{\text{max}}(x_0) & = 3.
\end{align*}
Avec cette représentation:

\[\frac{1}{\sqrt{\mathcal{M}}} \sum_{x=0}^{M-1} \left| x \right> \otimes \left| f(x) \right> = \frac{1}{\sqrt{\mathcal{M}}} \sum_{x_0=0}^{r-1} \sum_{j=0}^{A(x_0)-1} \left| x_0 + j r \right> \otimes \left| f(x_0) \right> \]

Donc l'état juste après \(U_g \) (avant QFT):

\[\left| \Psi' \right> = \frac{1}{\sqrt{\mathcal{M}}} \sum_{x_0=0}^{r-1} \sum_{j=0}^{A(x_0)-1} \left| x_0 + j r \right> \otimes \left| f(x_0) \right> \]

Il reste à appliquer QFT sur \(\left| \Psi' \right> \).
Expression finale de l'état juste avant la Mesure.

- La prochaine fois, le processus de Mesure / cette Mesure va donner un état $|\psi\rangle$ aléatoire / devenir dans cet état $1|\psi\rangle \otimes |\mathcal{C}(x_0)\rangle$.