Tensor Decompositions & Tensor Rank

Goal: Thus for order-3 tensors important primitive for studying also higher order tensors.

Definition of Tensor Rank

Rank-one tensors (elementary bricks)

- Take three vectors $a \in \mathbb{R}^{I_1}$, $b \in \mathbb{R}^{I_2}$, $c \in \mathbb{R}^{I_3}$

\[a^\alpha, \alpha = 1 \ldots I_1, \quad b^\beta, \beta = 1 \ldots I_2, \quad \gamma = 1 \ldots I_3 \]

- Form the tensor product (or outer product)

\[a \otimes b \otimes c = T \]

\[T^{\alpha \beta \gamma} = a^\alpha b^\beta c^\gamma \]

3-dim array of $I_1 I_2 I_3$ numbers.
Rank - R tensor. \(R \geq 1 \).

is a multi-ery (3-arrays) that can be written as a sum of \(R \) rank-one tensors with \(R \) being the minimal possible number of terms.

\[
T = \sum_{i=1}^{R} a_i \otimes b_i \otimes c_i
\]

\(R \) should be the smallest possible to qualify for Tensor-Rank.

Terminology: such decompositions are also called "tensor factorizations" or "polyadic decompositions".

Picture:
Adopt the following notation:

\[T = \sum_{i=1}^{2} a_i \otimes b_i \otimes c_i \]

\[A = \begin{bmatrix} a_1 \cdots a_2 \end{bmatrix} \leftarrow I_1 \times \mathbb{R} \]

\[\text{column vectors } a_i = \begin{bmatrix} a^{(i)} \end{bmatrix}_{\alpha=1}^{\alpha=I_1} \]

\[B = \begin{bmatrix} b_1 \cdots b_2 \end{bmatrix} \leftarrow I_2 \times \mathbb{R} \]

\[C = \begin{bmatrix} c_1 \cdots c_2 \end{bmatrix} \leftarrow I_3 \times \mathbb{R} \]
Remarks about the notion of tensor rank:

1) For metricien "tensor - rank" \(\Leftrightarrow \) usual lin-algebra notion of rank.

\[\dim (\text{row span}) = \dim (\text{column span}). \]

For tensors "Tensor - Rank" is not a linear- alg (of order \(p \geq 3 \)) notion.

Moreover, there are other notions of Rank (see later lects).

2) Non trivial to decompose a tensor in a minimal \# of rank one terms.

- Unicity?
- Algorithms?

Rule of thumb: \(R \) is "small" w.r.t. to \(I_1, I_2, I_3 \)

\(\rightarrow \) decomp tends to be unique \(\rightarrow \) efficient algms are known.

\(R \) is "moderate"

\(\rightarrow \) decomp is unique \(\rightarrow \) eff algms are not always known.

\(R \) is "large" \(\rightarrow \) dont even have unicity.
Basic Theorem [about order 3-tensors, 1970’s]

Jenrich, Carroll, Hansman ...

- Let $A = [a_1, \ldots, a_r]$ $I_1 \times R$
- $B = [b_1, \ldots, b_r]$ $I_2 \times R$
- $C = [c_1, \ldots, c_r]$ $I_3 \times R$

- A & B have full column rank R. (in particular $R \leq \min(I_1, I_2)$)
- C has pairwise indep columns: $\forall i, j. \quad c_i \neq b_j c_j$
- Take a 3-tensor T

$$T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$$

- Then the tensor (or multilinear form) $T_{x y z}$ can be decomposed in a unique way in a sum of at most 12 rank-one terms. And the tensor rank of T is R.

- Qualification for uniqueness: up to trivial rescaling of $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha \gamma = \beta \gamma$.

\[a_i \otimes b_i \otimes c_i \]
Remarks:

1) The theorem will be proved in a constructive way and the proof will thus give also an algorithm poly(I, I_2, I_3).

2) For this theorem we have R ≤ min(I_1, I_2) in this sense R is "small" - a non-unique & algorithmic result -

3) For R > min(I_1, I_2), len is known.

As an aside state the following result:

- Suppose that K_a, K_b, K_c are Kruskal ranks of A, B, C.

(K_a is the KR if it is the max integer such that all subsets of K_a ranks in I_0, ..., I_R are lin-indep; I_f K_a+1 subset that is lin-dep)

if 2R+2 ≤ K_a + K_b + K_c in decay of T Then this decay is unique.

- For example I_1 = I_2 = I_3 = N & R > N imagine K_a = K_b = K_c = N + R ≥ 3N - 2.

here you have non-uniqueness result for "moderately rank" N < R < \frac{3N-2}{2}.

BUT NO EFFICIENT ALGO'S ARE KNOWN!
4) This is "surprising" in the sense that for 2-tensors (metrics) it does not hold.

Recall the "relation problem":

\[A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \] \hspace{1cm} R = 2.

\[B = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \] \hspace{1cm} R = 2.

A & B have rank $R = 2$.

\[T = a_1 \otimes b_1 + a_2 \otimes b_2 \]

This decomposition is not unique! Why?

\[T = a_1 b_1^T + a_2 b_2^T \]

\[= \begin{bmatrix} a_1, a_2 \end{bmatrix} \begin{bmatrix} b_1^T \\ b_2^T \end{bmatrix} \]

\[= A B^T \]

\[= A R R^T B^T = (AR) (BR)^T = A B^T \]

Break Next Video Proof The

\[= a_1 \otimes b_1 + a_2 \otimes b_2 \]