ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout -	Principles of Digital Communications
Quiz 1	
3 problems.	
30 minutes.	
No notes allowed.	
Good Luck!	
Name/Surname :	
Grade:	

PROBLEM 1. Consider the following hypothesis testing problem:

$$H_0: f_{Y|H}(y|0) = \exp(-y)$$

$$H_1: f_{Y|H}(y|1) = 2\exp(-2y)$$

$$H_2: f_{Y|H}(y|2) = 2y\exp(-y^2),$$

where $y \ge 0$. We want to decide whether H = 0 or $H \ne 0$. To this end, we will design an estimator

$$\hat{H}_{\alpha}(y) = \begin{cases} 0 & y \ge \alpha \\ 1 & y < \alpha. \end{cases}$$

The estimator is evaluated using the following metrics:

$$\begin{aligned} p_{\text{det}} &:= P_{\hat{H}_{\alpha}(Y)|H}(0|0) \\ p_{\text{fp}} &:= \max\{P_{\hat{H}_{\alpha}(Y)|H}(0|1), P_{\hat{H}_{\alpha}(Y)|H}(0|2)\}. \end{aligned}$$

A good estimator will have high probability of detection p_{det} and low probability of false positive p_{fp} .

a. Calculate the following probabilities : $P_{\hat{H}_{\alpha}(Y)|H}(0|0)$, $P_{\hat{H}_{\alpha}(Y)|H}(0|1)$, and $P_{\hat{H}_{\alpha}(Y)|H}(0|2)$. [Hint : $\frac{d}{dx} \exp(\lambda x) = \lambda \exp(\lambda x)$ and $\frac{d}{dx} \exp(\lambda x^2) = 2\lambda x \exp(\lambda x^2)$.]

$$P_{\hat{H}_{\alpha}(Y)|H}(0|0) =$$

$$P_{\hat{H}_{\alpha}(Y)|H}(0|1) =$$

$$P_{\hat{H}_{\alpha}(Y)|H}(0|2) =$$

b. Sketch a plot of all points $(-\ln p_{\rm det}, -\ln p_{\rm fp})$, $0 \le -\ln p_{\rm det} \le 3$, that can be achieved using \hat{H}_{α} when we vary α .

PROBLEM 2. Consider a binary hypothesis test with observation $Y = \begin{bmatrix} Y_1 & Y_2 & Y_3 & Y_4 \end{bmatrix}^T$. Under hypothesis H = i, the observation is given by $Y = (-1)^i \mu + Z$ where

$$Z = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \end{bmatrix} \sim \mathcal{N} \left(0, \sigma^2 \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \right)$$

and $\mu = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$.

For each of the following functions, indicate if it is a sufficient statistic, and briefly explain why. [Hint: Do not apply Fisher-Neyman factorization. Observe instead that $\mathbb{E}[(Z_1 + Z_4)^2] = \mathbb{E}[(Z_2 + Z_3)^2] = 0$]

a.
$$T_1(Y) = Y_1 + Y_2 + Y_3 + Y_4$$

b.
$$T_2(Y) = Y_1 + Y_2 - \frac{Y_3 + Y_4}{2}$$

c.
$$T_3(Y) = Y_1 - Y_4 + \frac{Y_2 - Y_3}{2}$$

d.
$$T_4(Y) = \langle \begin{bmatrix} p & 1-p & -p & p-1 \end{bmatrix}, Y \rangle$$
 for some $p \in \mathbb{R}$

PROBLEM 3. Assume that $H \in \{0, 1, 2, 3, 4\}$. For each H = i, the transmitter transmits codeword μ_i and the receiver observes Y where

$$Y = \mu_i + Z$$
 $Z \sim \mathcal{N}\left(0, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right).$

The codewords are:

$$\mu_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $-\mu_1 = \mu_2 = \begin{bmatrix} 2A \\ 0 \end{bmatrix}$ $-\mu_3 = \mu_4 = \begin{bmatrix} 0 \\ 2A \end{bmatrix}$.

a. Sketch the decision regions assuming that all messages $P_H(i)$ are equally likely.

b. Calculate P(Error|H=0) for the decision regions you found in part (a).