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Problem 1 (Random Coding).

(a) Let Du,t := {dh
(
Y n, Cn(u)

)
= t, U = u}, i.e., the event that message u is selected

and the Hamming distance between the received sequence Y n and Cn(u) is t. Now
observe the following:

Pr
(
u /∈ Û(Y n)

∣∣∣Du,t

)
= Pr

(
∃ũ ∈ U \ {u}, dh

(
Y n, Cn(ũ)

)
< t
∣∣∣Du,t

)
= Pr

 ⋃
ũ∈U\{u}

dh
(
Y n, Cn(ũ)

)
< t
∣∣∣Du,t


(i)

≤
∑

ũ∈U\{u}

Pr
(
dh
(
Y n, Cn(ũ)

)
< t
∣∣∣Du,t

)
(ii)
=

∑
ũ∈U\{u}

Pr
(
dh
(
Y n, Cn(ũ)

)
< t
)

.

The inequality (i) is justified by the union bound and the equality (ii) is follows from
the fact that the codewords are selected independently, i.e., Cn(ũ) is independent of
Y and Cn(u).

Note that for any ũ and Y n, Pr
(
dh
(
Y n, Cn(ũ)

)
< t
)

=
∑t−1

i=0

(
n
i

)
2−n. Hence, as a

final result we have

Pr
(
u /∈ Û(Y n)

∣∣∣Du,t

)
≤ |U|

t−1∑
i=0

(
n

i

)
2−n =

t−1∑
i=0

(
n

i

)
2−n(1−R).

(b)

Pr
(

decn(Y n) 6= u, u ∈ Û(Y n)
∣∣∣Du,t

)
= Pr

(
∃ũ ∈ U \ {u}, dh

(
Y n, Cn(ũ)

)
= t, decn(Y n) = ũ

∣∣∣Du,t

)
(i)

≤
∑

ũ∈U\{u},

Pr
(
dh
(
Y n, Cn(ũ)

)
= t, decn(Y n) = ũ

∣∣∣Du,t

)
where (i) follows from union bound. Now, for any ũ ∈ U \ {u}, observe the factoriza-
tion below.

Pr
(
dh
(
Y n, Cn(ũ)

)
= t, decn(Y n) = ũ

∣∣∣Du,t

)
= Pr

(
dh
(
Y n, Cn(ũ)

)
= t
∣∣∣Du,t

)
Pr
(

decn(Y n) = ũ
∣∣∣Du,t, dh

(
Y n, Cn(ũ)

)
= t
)

(ii)
=

(
n

t

)
2−n Pr

(
decn(Y n) = ũ

∣∣∣Du,t, dh
(
Y n, Cn(ũ)

)
= t
)



Again, (ii) is justified by the independent codeword selection procedure. To upper
bound the probability of the remaining event, note that the conditioned events Du,t

and dh
(
Y n, Cn(ũ)

)
= t imply there are at least 2 codewords in the decoding set

Û(Y n). Therefore the probability of ũ being selected randomly at uniform is less
than 1

2
. i.e.,

Pr
(

decn(Y n) = ũ
∣∣∣Du,t, dh

(
Y n, Cn(ũ)

)
= t
)
≤ 1

2
.

Combining the results, finally we obtain

Pr
(

decn(Y n) 6= u, u ∈ Û(Y n)
∣∣∣Du,t

)
≤ 1

2

(
n

t

)
2−n(1−R).

(c) Let Du := {U = u}. i.e., the true codeword is u. Then we have

Pr
(

decn(Y n) 6= u
∣∣∣Du

)
=

n∑
t=0

Pr
(

decn(Y n) 6= u
∣∣∣Du,t

)
Pr
(
dh
(
Y n, Cn(u)

)
= t
∣∣∣Du

)
.

and

Pr
(
dh
(
Y n, Cn(u)

)
= t
∣∣∣Du

)
= Pr

(
BSC(p) flips t bits

)
=

(
n

t

)
pt(1− p)(n−t).

Furthermore,

Pr
(

decn(Y n) 6= u
∣∣∣Du,t

)
= Pr

(
decn(Y n) 6= u, u /∈ Û(Y n)

∣∣∣Du,t

)
+ Pr

(
decn(Y n) 6= u, u ∈ Û(Y n)

∣∣∣Du,t

)
(i)

≤
t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

where (i) is obtained from the results of part (a) and (b). The above expression is a
probability so it also has to be less than 1.

Pr
(

decn(Y n) 6= u
∣∣∣Du,t

)
≤ min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
.

Combining all the above, we obtain

Pr
(

decn(Y n) 6= u
∣∣∣Du

)
≤

n∑
t=0

(
n

t

)
pt(1−p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
.

This expression does not depend on the choice of u. The conditioning can be removed.

Pr(decn(Y n) 6= U) ≤
n∑
t=0

(
n

t

)
pt(1−p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
.

Observe that Pr(decn(Y n) 6= U) = ECn [Pr(decn(Y n) 6= U |Cn)], that is, the average
error probability averaged over the selection of codebooks. Therefore, there must
exist a codebook Cn that satisfies

Pr(decn(Y n) 6= U |Cn) ≤
n∑
t=0

(
n

t

)
pt(1−p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
.
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(d) As in the hint, define ρ := t/n and ρ̄ := 1− ρ.

1 =
n∑
i=0

(
n

i

)
ρiρ̄n−i ≥

t∑
i=0

(
n

i

)
ρiρ̄n−i

For t ≤ n/2, note that ρ ≤ 1
2

and ρ̄ ≥ 1
2
. Thus ρiρ̄n−i is decreasing in i. Then we

have

1 ≥
t∑
i=0

(
n

i

)
ρiρ̄n−i ≥

t∑
i=0

(
n

i

)
ρtρ̄n−t =

t∑
i=0

(
n

i

)
2−nh2(ρ),

from which we conclude
∑t

i=0

(
n
i

)
≤ 2nh2(ρ).

(e) It suffices to prove part (i). A similar proof follows for part (ii).
For part (i), we have

bnqc∑
i=0

(
n

i

)
pip̄n−i =

bnqc∑
i=0

(
n

i

)
p

q

i p̄

q̄

n−i
qiq̄n−i.

We know q < p, therefore p
q
> 1 and p̄

q̄
< 1. p

q
i p̄
q̄

n−i
is then increasing in i and

p

q

i p̄

q̄

n−i
≤ p

q

nq p̄

q̄

n−nq
= 2−nD2(q||p)

for any i ≤ bnqc. This yields

bnqc∑
i=0

(
n

i

)
pip̄n−i ≤

bnqc∑
i=0

(
n

i

)
qiq̄n−i2−nD(q||p) ≤ 2−nD(q||p).

For part (ii), we have p
q
< 1 and p̄

q̄
> 1. Thus,

p

q

i p̄

q̄

n−i
≤ 2−nD2(q||p)

for any i ≥ nq. A similar proof follows from here.

(f) It is known that the capacity C = 1 − h2(p) for BSC(p). Recall that 1 − h2(p) is a
continuous and decreasing function on [0, 1/2]. Hence, for any R < 1−h2(p), p < 1/2
we can find a p < q < 1/2 such that R < 1− h2(q). In part (c), we proved

Pr
(

decn(Y n) 6= U
)
≤

n∑
t=0

(
n

t

)
pt(1−p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
.

Taking such q described above, we can split the outer sum into two parts.

n∑
t=0

(
n

t

)
pt(1− p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
= S1 + S2,

S1 :=

bnqc∑
t=0

(
n

t

)
pt(1− p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
,

S2 :=
n∑

t=dnqe

(
n

t

)
pt(1− p)n−t min

{
1,

t−1∑
i=0

(
n

i

)
2−n(1−R) +

1

2

(
n

t

)
2−n(1−R)

}
.
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For S1, we have

S1 ≤
bnqc∑
t=0

(
n

t

)
pt(1− p)n−t

t∑
i=0

(
n

i

)
2−n(1−R)

Note that t < nq < n/2. Using the result of part (d), we have

S1 ≤
bnqc∑
t=0

(
n

t

)
pt(1− p)n−t

t∑
i=0

(
n

i

)
2−n(1−R) ≤ 2−n(1−R)

bnqc∑
t=0

(
n

t

)
pt(1− p)n−t2nh2(t/n)

(i)

≤ 2−n(1−R)2nh2(t/n)
(ii)

≤ 2−n(1−h2(q)−R)

where (i) follows from the fact that
∑bnqc

t=0

(
n
t

)
pt(1 − p)n−t ≤ 1 and (ii) follows from

h2(.) is increasing in [0, 1
2
] and t

n
< q < 1

2
.

For S2, we have

S2 ≤
n∑

t=dnqe

(
n

t

)
pt(1− p)n−t

(iii)

≤ 2−nD2(q||p)

where (iii) is obtained from part (e). Combining all the upper bounds, we obtain the
final upper bound as

Pr
(

decn(Y n) 6= U
)
≤ 2−n(1−h2(q)−R) + 2−nD2(q||p)

for any q satisfying p < q < 1
2

and 1− h2(q) > R. This shows that

Pr
(

decn(Y n) 6= U
)
→ 0 as n→∞.

In part (c), we have shown that such {Cn} exists.
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Problem 2 (Feinstein’s Theorem).

(a)

Z(W ) =
√
W (0|0)W (0|1) +

√
W (1|0)W (1|1) = 2

√
p(1− p).

To easily calculate V (W ), let p̄ := 1− p and note that

i(X;Y ) =

{
log2

(
2p̄
)
, w.p. p̄

log2

(
2p
)
, w.p. p

with E[i(X;Y )] = I(X;Y ) = 1 − h2(p). Therefore, its variance is straightforwardly
calculated as

V (W ) = Var
(
i(X;Y )

)
= E[(i(X;Y )− I(X;Y ))2]

= p [1 + log2 p− (1 + p log2 p+ p̄ log2 p̄)]
2 + p [1 + log2 p− (1 + p log2 p+ p̄ log2 p̄)]

2

= pp̄2

(
log2

p

p̄

)2

+ p2p̄

(
log2

p̄

p

)2

= pp̄

(
log2

p̄

p

)2

.

(b) Suppose Bi, i ≥ 1 are i.i.d. and bounded random variables which can take values on
the interval [a, b]. For this case, given t > 0, Hoeffding’s inequality can be expressed
as

Pr

(
n∑
i=1

Bi ≤ n(E[B]− t)

)
≤ exp

(
−2nt2

(b− a)2

)
.

For our case, we know that i(Xn
1 ;Y n

1 ) = log2

(
W (Y n

1 |Xn
1 )

W (Y n
1 )

)
= log2

(∏n
i=1

W (Yi|Xi)
W (Yi)

)
=∑n

i=1 log2

(
W (Yi|Xi)
W (Yi)

)
=
∑n

j=1 i(Xj;Yj) since the channel is memoryless and Xis are

i.i.d. Moreover, i(X;Y ) only takes the values log2(2p̄) and log2(2p). Applying Ho-
effding’s inequality, we obtain

Pr (i(Xn
1 ;Y n

1 ) < n(R + δ)) ≤ Pr

(
i(Xn

1 ;Y n
1 ) ≤ n

(
I(X;Y )−

(
I(X;Y )−R− δ

)))
≤ exp

(
−2n(I(X;Y )−R− δ)2

log2(p̄/p)2

)
= exp

(
−2n(I(X;Y )−R− δ)2pp̄

pp̄ log2(p̄/p)2

)
= exp

(−n(I(X;Y )−R− δ)2Z2
p

2Vp

)
.

(c) We do the variable change γ = 1 − δ
I(X;Y )−R . Note that 0 < γ < 1 provided that

δ < I(X;Y )−R. We also have δ = γ̄
(
I(X;Y )−R

)
. Substituting this new variable,

we obtain

ε ≤ exp

(−n(I(X;Y )−R− γ̄(I(X;Y )−R))2Z2
p

2Vp

)
+ 2−nγ̄(I(X;Y )−R)

= exp

(−n(γ(I(X;Y )−R))2Z2
p

2Vp

)
+ exp

(
−nγ̄(I(X;Y )−R)

log2 e

)
.
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Since we are able to choose δ freely as long as 0 < δ < I(X;Y )−R, this corresponds
to choosing γ freely as long as 0 < γ < 1. Observe that the inequality is satisfied for
all allowed choices of δ, and hence for all allowed choices of γ. The right hand side
(RHS) can be optimized to obtain a tighter upper bound as

ε ≤ min
0≤γ≤1

exp

(−n(γ(I(X;Y )−R))2Z2
p

2Vp

)
+ exp

(
−nγ̄(I(X;Y )−R)

log2 e

)
.

Note: One could extend the optimization interval and replace the strict inequalities
with weak inequalities in order to obtain a compact region and attain the minimum.
This does not change the optimal value of RHS as the minimum is clearly not attained
at 0 or 1.
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Problem 3 (Strong Converse).

a) As the channel is BSC(p), we have the probability

W n
(
Y(u) ∩Bq,n(u)|U = u

)
=

bnqc∑
i=0

(
n

i

)
pi(1− p)n−i.

Therefore by the result of 1) e) we have

W n
(
Y(u) ∩Bq,n(u)|U = u

)
≤ 2−nD2(q||p)

b) As yn 6= Bq,n(u), we also know that dH(yn, enc(u)) > nq. This implies that

W n
(
yn|U = u

)
= pdH(yn,enc(u))(1−p)n−dH(yn,enc(u)) ≤ pnq(1−p)n(1−q). ∀yn /∈ Bq,n(u)

Where the last inequality is due to the fact that p ≤ (1− p).

c) We have the correct decoding probability equals to:

= P (dec(Y n) = u|U = u)

= P (Y n ∈ Y(u)|U = u)

= P (Y n ∈ Y(u) ∩ Y n ∈ Bq,n(u)|U = u) + P (Y n ∈ Y(u) ∩ Y n /∈ Bq,n(u)|U = u)

≤ P (Y n ∈ Bq,n(u)|U = u) + |Y(u)|pnq(1− p)n(1−q)

≤ 2−nD2(q||p) +
|Y(u)|

2n
2n2nq log p+n(1−q) log(1−p)

= 2−nD2(q||p) +
|Y(u)|

2n
2n(1−h2(q)−D2(q||p))

d) From the result in (c), we have the following inequality

P (dec(Y n) = U) =
∑
u∈U

P (dec(Y n) = u|U = u)P (U = u)

≤ 2−nR
∑
u∈U

2−nD2(q||p) +
|Y(u)|

2n
2n(1−h2(q)−D2(q||p))

= 2−nR

(
2nR2−nD2(q||p) + 2n(1−h2(q)−D2(q||p))

∑
u∈U

|Y(u)|
2n

)
= 2−nD2(q||p) + 2−n(R−1+h2(q)+D2(q||p))

e) Observe that the function f(h) = 1 + h log2 p + (1 − h) log2(1 − p) is continuous.
Hence if f(a) = ka, f(b) = kb and k∗ ∈ [ka, kb], there is a value c ∈ [a, b] such that
f(c) = k∗. We note that f(p) = C and f(0) = 1. Hence if we take k∗ = min(1, R+C

2
),

there is always a q ∈ [0, p] such that:

C < f(k∗) = min

(
1,
R + C

2

)
< R.

f) If we define
f(h) = 1 + h log2 p+ (1− h) log2(1− p),
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then the result of d. is equal to:

P (dec(Y n) = U) ≤ 2−nD2(q||p) + 2−n(R−f(q)) ∀q ≤ p

By the result of e., we know that there exists q∗ < p such that f(q∗) < R if R > C.
Plugging this q∗ to our inequality gives us

P (dec(Y n) = U) ≤ 2−nD2(q∗||p) + 2−nc)

where c = R− f(q∗) > 0. Because D2(q∗||p) > 0 as q∗ 6= p, then we have

lim
n→∞

P (dec(Y n) = U) = 0.

This implies that

lim
n→∞

P (dec(Y n) 6= U) = 1− lim
n→∞

P (dec(Y n) = U) = 1.
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