

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 24

Graded Homework Solutions

Information Theory and Coding

Jan. 5, 2020

PROBLEM 1 (RANDOM CODING).

(a) Let $D_{u,t} := \{d_h(Y^n, C_n(u)) = t, U = u\}$, i.e., the event that message u is selected and the Hamming distance between the received sequence Y^n and $C_n(u)$ is t . Now observe the following:

$$\begin{aligned} \Pr(u \notin \hat{U}(Y^n) \mid D_{u,t}) &= \Pr(\exists \tilde{u} \in \mathcal{U} \setminus \{u\}, d_h(Y^n, C_n(\tilde{u})) < t \mid D_{u,t}) \\ &= \Pr\left(\bigcup_{\tilde{u} \in \mathcal{U} \setminus \{u\}} d_h(Y^n, C_n(\tilde{u})) < t \mid D_{u,t}\right) \\ &\stackrel{(i)}{\leq} \sum_{\tilde{u} \in \mathcal{U} \setminus \{u\}} \Pr(d_h(Y^n, C_n(\tilde{u})) < t \mid D_{u,t}) \\ &\stackrel{(ii)}{=} \sum_{\tilde{u} \in \mathcal{U} \setminus \{u\}} \Pr(d_h(Y^n, C_n(\tilde{u})) < t). \end{aligned}$$

The inequality (i) is justified by the union bound and the equality (ii) follows from the fact that the codewords are selected independently, i.e., $C_n(\tilde{u})$ is independent of Y and $C_n(u)$.

Note that for any \tilde{u} and Y^n , $\Pr(d_h(Y^n, C_n(\tilde{u})) < t) = \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n}$. Hence, as a final result we have

$$\Pr(u \notin \hat{U}(Y^n) \mid D_{u,t}) \leq |\mathcal{U}| \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n} = \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)}.$$

(b)

$$\begin{aligned} &\Pr(\text{dec}_n(Y^n) \neq u, u \in \hat{U}(Y^n) \mid D_{u,t}) \\ &= \Pr(\exists \tilde{u} \in \mathcal{U} \setminus \{u\}, d_h(Y^n, C_n(\tilde{u})) = t, \text{dec}_n(Y^n) = \tilde{u} \mid D_{u,t}) \\ &\stackrel{(i)}{\leq} \sum_{\tilde{u} \in \mathcal{U} \setminus \{u\}} \Pr(d_h(Y^n, C_n(\tilde{u})) = t, \text{dec}_n(Y^n) = \tilde{u} \mid D_{u,t}) \end{aligned}$$

where (i) follows from union bound. Now, for any $\tilde{u} \in \mathcal{U} \setminus \{u\}$, observe the factorization below.

$$\begin{aligned} &\Pr(d_h(Y^n, C_n(\tilde{u})) = t, \text{dec}_n(Y^n) = \tilde{u} \mid D_{u,t}) \\ &= \Pr(d_h(Y^n, C_n(\tilde{u})) = t \mid D_{u,t}) \Pr(\text{dec}_n(Y^n) = \tilde{u} \mid D_{u,t}, d_h(Y^n, C_n(\tilde{u})) = t) \\ &\stackrel{(ii)}{=} \binom{n}{t} 2^{-n} \Pr(\text{dec}_n(Y^n) = \tilde{u} \mid D_{u,t}, d_h(Y^n, C_n(\tilde{u})) = t) \end{aligned}$$

Again, (ii) is justified by the independent codeword selection procedure. To upper bound the probability of the remaining event, note that the conditioned events $D_{u,t}$ and $d_h(Y^n, C_n(\tilde{u})) = t$ imply there are at least 2 codewords in the decoding set $\hat{U}(Y^n)$. Therefore the probability of \tilde{u} being selected randomly at uniform is less than $\frac{1}{2}$. i.e.,

$$\Pr\left(\text{dec}_n(Y^n) = \tilde{u} \mid D_{u,t}, d_h(Y^n, C_n(\tilde{u})) = t\right) \leq \frac{1}{2}.$$

Combining the results, finally we obtain

$$\Pr\left(\text{dec}_n(Y^n) \neq u, u \in \hat{U}(Y^n) \mid D_{u,t}\right) \leq \frac{1}{2} \binom{n}{t} 2^{-n(1-R)}.$$

(c) Let $D_u := \{U = u\}$. i.e., the true codeword is u . Then we have

$$\Pr\left(\text{dec}_n(Y^n) \neq u \mid D_u\right) = \sum_{t=0}^n \Pr\left(\text{dec}_n(Y^n) \neq u \mid D_{u,t}\right) \Pr\left(d_h(Y^n, C_n(u)) = t \mid D_u\right).$$

and

$$\Pr\left(d_h(Y^n, C_n(u)) = t \mid D_u\right) = \Pr\left(\text{BSC}(p) \text{ flips } t \text{ bits}\right) = \binom{n}{t} p^t (1-p)^{n-t}.$$

Furthermore,

$$\begin{aligned} & \Pr\left(\text{dec}_n(Y^n) \neq u \mid D_{u,t}\right) \\ &= \Pr\left(\text{dec}_n(Y^n) \neq u, u \notin \hat{U}(Y^n) \mid D_{u,t}\right) + \Pr\left(\text{dec}_n(Y^n) \neq u, u \in \hat{U}(Y^n) \mid D_{u,t}\right) \\ &\stackrel{(i)}{\leq} \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \end{aligned}$$

where (i) is obtained from the results of part (a) and (b). The above expression is a probability so it also has to be less than 1.

$$\Pr\left(\text{dec}_n(Y^n) \neq u \mid D_{u,t}\right) \leq \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}.$$

Combining all the above, we obtain

$$\Pr\left(\text{dec}_n(Y^n) \neq u \mid D_u\right) \leq \sum_{t=0}^n \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}.$$

This expression does not depend on the choice of u . The conditioning can be removed.

$$\Pr(\text{dec}_n(Y^n) \neq U) \leq \sum_{t=0}^n \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}.$$

Observe that $\Pr(\text{dec}_n(Y^n) \neq U) = E_{C_n}[\Pr(\text{dec}_n(Y^n) \neq U | C_n)]$, that is, the average error probability averaged over the selection of codebooks. Therefore, there must exist a codebook C_n that satisfies

$$\Pr(\text{dec}_n(Y^n) \neq U | C_n) \leq \sum_{t=0}^n \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}.$$

(d) As in the hint, define $\rho := t/n$ and $\bar{\rho} := 1 - \rho$.

$$1 = \sum_{i=0}^n \binom{n}{i} \rho^i \bar{\rho}^{n-i} \geq \sum_{i=0}^t \binom{n}{i} \rho^i \bar{\rho}^{n-i}$$

For $t \leq n/2$, note that $\rho \leq \frac{1}{2}$ and $\bar{\rho} \geq \frac{1}{2}$. Thus $\rho^i \bar{\rho}^{n-i}$ is decreasing in i . Then we have

$$1 \geq \sum_{i=0}^t \binom{n}{i} \rho^i \bar{\rho}^{n-i} \geq \sum_{i=0}^t \binom{n}{i} \rho^t \bar{\rho}^{n-t} = \sum_{i=0}^t \binom{n}{i} 2^{-nh_2(\rho)},$$

from which we conclude $\sum_{i=0}^t \binom{n}{i} \leq 2^{nh_2(\rho)}$.

(e) It suffices to prove part (i). A similar proof follows for part (ii).

For part (i), we have

$$\sum_{i=0}^{\lfloor nq \rfloor} \binom{n}{i} p^i \bar{p}^{n-i} = \sum_{i=0}^{\lfloor nq \rfloor} \binom{n}{i} \frac{p^i}{q} \frac{\bar{p}^{n-i}}{\bar{q}} q^i \bar{q}^{n-i}.$$

We know $q < p$, therefore $\frac{p}{q} > 1$ and $\frac{\bar{p}}{\bar{q}} < 1$. $\frac{p^i}{q} \frac{\bar{p}^{n-i}}{\bar{q}}$ is then increasing in i and

$$\frac{p^i}{q} \frac{\bar{p}^{n-i}}{\bar{q}} \leq \frac{p^{nq}}{q} \frac{\bar{p}^{n-nq}}{\bar{q}} = 2^{-nD_2(q||p)}$$

for any $i \leq \lfloor nq \rfloor$. This yields

$$\sum_{i=0}^{\lfloor nq \rfloor} \binom{n}{i} p^i \bar{p}^{n-i} \leq \sum_{i=0}^{\lfloor nq \rfloor} \binom{n}{i} q^i \bar{q}^{n-i} 2^{-nD(q||p)} \leq 2^{-nD(q||p)}.$$

For part (ii), we have $\frac{p}{q} < 1$ and $\frac{\bar{p}}{\bar{q}} > 1$. Thus,

$$\frac{p^i}{q} \frac{\bar{p}^{n-i}}{\bar{q}} \leq 2^{-nD_2(q||p)}$$

for any $i \geq nq$. A similar proof follows from here.

(f) It is known that the capacity $C = 1 - h_2(p)$ for BSC(p). Recall that $1 - h_2(p)$ is a continuous and decreasing function on $[0, 1/2]$. Hence, for any $R < 1 - h_2(p)$, $p < 1/2$ we can find a $p < q < 1/2$ such that $R < 1 - h_2(q)$. In part (c), we proved

$$\Pr\left(\text{dec}_n(Y^n) \neq U\right) \leq \sum_{t=0}^n \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}.$$

Taking such q described above, we can split the outer sum into two parts.

$$\begin{aligned} \sum_{t=0}^n \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\} &= S_1 + S_2, \\ S_1 &:= \sum_{t=0}^{\lfloor nq \rfloor} \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}, \\ S_2 &:= \sum_{t=\lceil nq \rceil}^n \binom{n}{t} p^t (1-p)^{n-t} \min \left\{ 1, \sum_{i=0}^{t-1} \binom{n}{i} 2^{-n(1-R)} + \frac{1}{2} \binom{n}{t} 2^{-n(1-R)} \right\}. \end{aligned}$$

For S_1 , we have

$$S_1 \leq \sum_{t=0}^{\lfloor nq \rfloor} \binom{n}{t} p^t (1-p)^{n-t} \sum_{i=0}^t \binom{n}{i} 2^{-n(1-R)}$$

Note that $t < nq < n/2$. Using the result of part (d), we have

$$\begin{aligned} S_1 &\leq \sum_{t=0}^{\lfloor nq \rfloor} \binom{n}{t} p^t (1-p)^{n-t} \sum_{i=0}^t \binom{n}{i} 2^{-n(1-R)} \leq 2^{-n(1-R)} \sum_{t=0}^{\lfloor nq \rfloor} \binom{n}{t} p^t (1-p)^{n-t} 2^{nh_2(t/n)} \\ &\stackrel{(i)}{\leq} 2^{-n(1-R)} 2^{nh_2(t/n)} \stackrel{(ii)}{\leq} 2^{-n(1-h_2(q)-R)} \end{aligned}$$

where (i) follows from the fact that $\sum_{t=0}^{\lfloor nq \rfloor} \binom{n}{t} p^t (1-p)^{n-t} \leq 1$ and (ii) follows from $h_2(\cdot)$ is increasing in $[0, \frac{1}{2}]$ and $\frac{t}{n} < q < \frac{1}{2}$.

For S_2 , we have

$$S_2 \leq \sum_{t=\lceil nq \rceil}^n \binom{n}{t} p^t (1-p)^{n-t} \stackrel{(iii)}{\leq} 2^{-nD_2(q||p)}$$

where (iii) is obtained from part (e). Combining all the upper bounds, we obtain the final upper bound as

$$\Pr(\text{dec}_n(Y^n) \neq U) \leq 2^{-n(1-h_2(q)-R)} + 2^{-nD_2(q||p)}$$

for any q satisfying $p < q < \frac{1}{2}$ and $1 - h_2(q) > R$. This shows that

$$\Pr(\text{dec}_n(Y^n) \neq U) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

In part (c), we have shown that such $\{C_n\}$ exists.

PROBLEM 2 (FEINSTEIN'S THEOREM).

(a)

$$Z(W) = \sqrt{W(0|0)W(0|1)} + \sqrt{W(1|0)W(1|1)} = 2\sqrt{p(1-p)}.$$

To easily calculate $V(W)$, let $\bar{p} := 1 - p$ and note that

$$i(X; Y) = \begin{cases} \log_2(2\bar{p}), & \text{w.p. } \bar{p} \\ \log_2(2p), & \text{w.p. } p \end{cases}$$

with $E[i(X; Y)] = I(X; Y) = 1 - h_2(p)$. Therefore, its variance is straightforwardly calculated as

$$\begin{aligned} V(W) &= \text{Var}(i(X; Y)) = E[(i(X; Y) - I(X; Y))^2] \\ &= p[1 + \log_2 p - (1 + p \log_2 p + \bar{p} \log_2 \bar{p})]^2 + p[1 + \log_2 p - (1 + p \log_2 p + \bar{p} \log_2 \bar{p})]^2 \\ &= p\bar{p}^2 \left(\log_2 \frac{p}{\bar{p}} \right)^2 + p^2\bar{p} \left(\log_2 \frac{\bar{p}}{p} \right)^2 \\ &= p\bar{p} \left(\log_2 \frac{\bar{p}}{p} \right)^2. \end{aligned}$$

(b) Suppose B_i , $i \geq 1$ are i.i.d. and bounded random variables which can take values on the interval $[a, b]$. For this case, given $t > 0$, Hoeffding's inequality can be expressed as

$$\Pr \left(\sum_{i=1}^n B_i \leq n(E[B] - t) \right) \leq \exp \left(\frac{-2nt^2}{(b-a)^2} \right).$$

For our case, we know that $i(X_1^n; Y_1^n) = \log_2 \left(\frac{W(Y_1^n|X_1^n)}{W(Y_1^n)} \right) = \log_2 \left(\prod_{i=1}^n \frac{W(Y_i|X_i)}{W(Y_i)} \right) = \sum_{i=1}^n \log_2 \left(\frac{W(Y_i|X_i)}{W(Y_i)} \right) = \sum_{j=1}^n i(X_j; Y_j)$ since the channel is memoryless and X_i s are i.i.d. Moreover, $i(X; Y)$ only takes the values $\log_2(2\bar{p})$ and $\log_2(2p)$. Applying Hoeffding's inequality, we obtain

$$\begin{aligned} \Pr(i(X_1^n; Y_1^n) < n(R + \delta)) &\leq \Pr \left(i(X_1^n; Y_1^n) \leq n \left(I(X; Y) - (I(X; Y) - R - \delta) \right) \right) \\ &\leq \exp \left(\frac{-2n(I(X; Y) - R - \delta)^2}{\log_2(\bar{p}/p)^2} \right) \\ &= \exp \left(\frac{-2n(I(X; Y) - R - \delta)^2 p\bar{p}}{p\bar{p} \log_2(\bar{p}/p)^2} \right) \\ &= \exp \left(\frac{-n(I(X; Y) - R - \delta)^2 Z_p^2}{2V_p} \right). \end{aligned}$$

(c) We do the variable change $\gamma = 1 - \frac{\delta}{I(X; Y) - R}$. Note that $0 < \gamma < 1$ provided that $\delta < I(X; Y) - R$. We also have $\delta = \bar{\gamma}(I(X; Y) - R)$. Substituting this new variable, we obtain

$$\begin{aligned} \epsilon &\leq \exp \left(\frac{-n(I(X; Y) - R - \bar{\gamma}(I(X; Y) - R))^2 Z_p^2}{2V_p} \right) + 2^{-n\bar{\gamma}(I(X; Y) - R)} \\ &= \exp \left(\frac{-n(\gamma(I(X; Y) - R))^2 Z_p^2}{2V_p} \right) + \exp \left(\frac{-n\bar{\gamma}(I(X; Y) - R)}{\log_2 e} \right). \end{aligned}$$

Since we are able to choose δ freely as long as $0 < \delta < I(X; Y) - R$, this corresponds to choosing γ freely as long as $0 < \gamma < 1$. Observe that the inequality is satisfied for all allowed choices of δ , and hence for all allowed choices of γ . The right hand side (RHS) can be optimized to obtain a tighter upper bound as

$$\epsilon \leq \min_{0 \leq \gamma \leq 1} \exp \left(\frac{-n(\gamma(I(X; Y) - R))^2 Z_p^2}{2V_p} \right) + \exp \left(\frac{-n\bar{\gamma}(I(X; Y) - R)}{\log_2 e} \right).$$

Note: One could extend the optimization interval and replace the strict inequalities with weak inequalities in order to obtain a compact region and attain the minimum. This does not change the optimal value of RHS as the minimum is clearly not attained at 0 or 1.

PROBLEM 3 (STRONG CONVERSE).

a) As the channel is BSC(p), we have the probability

$$W^n(\mathcal{Y}(u) \cap B_{q,n}(u) | U = u) = \sum_{i=0}^{\lfloor nq \rfloor} \binom{n}{i} p^i (1-p)^{n-i}.$$

Therefore by the result of 1) e) we have

$$W^n(\mathcal{Y}(u) \cap B_{q,n}(u) | U = u) \leq 2^{-nD_2(q||p)}$$

b) As $y^n \neq B_{q,n}(u)$, we also know that $d_H(y^n, \text{enc}(u)) > nq$. This implies that

$$W^n(y^n | U = u) = p^{d_H(y^n, \text{enc}(u))} (1-p)^{n-d_H(y^n, \text{enc}(u))} \leq p^{nq} (1-p)^{n(1-q)}. \quad \forall y^n \notin B_{q,n}(u)$$

Where the last inequality is due to the fact that $p \leq (1-p)$.

c) We have the correct decoding probability equals to:

$$\begin{aligned} &= P(\text{dec}(Y^n) = u | U = u) \\ &= P(Y^n \in \mathcal{Y}(u) | U = u) \\ &= P(Y^n \in \mathcal{Y}(u) \cap Y^n \in B_{q,n}(u) | U = u) + P(Y^n \in \mathcal{Y}(u) \cap Y^n \notin B_{q,n}(u) | U = u) \\ &\leq P(Y^n \in B_{q,n}(u) | U = u) + |\mathcal{Y}(u)| p^{nq} (1-p)^{n(1-q)} \\ &\leq 2^{-nD_2(q||p)} + \frac{|\mathcal{Y}(u)|}{2^n} 2^{nq \log p + n(1-q) \log(1-p)} \\ &= 2^{-nD_2(q||p)} + \frac{|\mathcal{Y}(u)|}{2^n} 2^{n(1-h_2(q) - D_2(q||p))} \end{aligned}$$

d) From the result in (c), we have the following inequality

$$\begin{aligned} P(\text{dec}(Y^n) = U) &= \sum_{u \in \mathcal{U}} P(\text{dec}(Y^n) = u | U = u) P(U = u) \\ &\leq 2^{-nR} \sum_{u \in \mathcal{U}} 2^{-nD_2(q||p)} + \frac{|\mathcal{Y}(u)|}{2^n} 2^{n(1-h_2(q) - D_2(q||p))} \\ &= 2^{-nR} \left(2^{nR} 2^{-nD_2(q||p)} + 2^{n(1-h_2(q) - D_2(q||p))} \sum_{u \in \mathcal{U}} \frac{|\mathcal{Y}(u)|}{2^n} \right) \\ &= 2^{-nD_2(q||p)} + 2^{-n(R-1+h_2(q)+D_2(q||p))} \end{aligned}$$

e) Observe that the function $f(h) = 1 + h \log_2 p + (1-h) \log_2(1-p)$ is continuous. Hence if $f(a) = k_a$, $f(b) = k_b$ and $k^* \in [k_a, k_b]$, there is a value $c \in [a, b]$ such that $f(c) = k^*$. We note that $f(p) = C$ and $f(0) = 1$. Hence if we take $k^* = \min(1, \frac{R+C}{2})$, there is always a $q \in [0, p]$ such that:

$$C < f(k^*) = \min \left(1, \frac{R+C}{2} \right) < R.$$

f) If we define

$$f(h) = 1 + h \log_2 p + (1-h) \log_2(1-p),$$

then the result of d. is equal to:

$$P(\text{dec}(Y^n) = U) \leq 2^{-nD_2(q||p)} + 2^{-n(R-f(q))} \quad \forall q \leq p$$

By the result of e., we know that there exists $q^* < p$ such that $f(q^*) < R$ if $R > C$. Plugging this q^* to our inequality gives us

$$P(\text{dec}(Y^n) = U) \leq 2^{-nD_2(q^*||p)} + 2^{-nc}$$

where $c = R - f(q^*) > 0$. Because $D_2(q^*||p) > 0$ as $q^* \neq p$, then we have

$$\lim_{n \rightarrow \infty} P(\text{dec}(Y^n) = U) = 0.$$

This implies that

$$\lim_{n \rightarrow \infty} P(\text{dec}(Y^n) \neq U) = 1 - \lim_{n \rightarrow \infty} P(\text{dec}(Y^n) = U) = 1.$$