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PrOBLEM 1 (RANDOM CODING).

(a) Let Dy, := {dp(Y",Cn(u)) = t, U = u}, ie., the event that message u is selected
and the Hamming distance between the received sequence Y and C,,(u) is t. Now
observe the following:

Pr(ug U™ | Dus) = Pr(3a €U\ {u}, du(Y", Gl <t)Dut)

—Pr| U a7 Cu@) <t|Du
aeU\{u}
()
< Pr (dh(Y Ol <t)Dut)
aeU\{u}
© oy Pr(dh(Y”,C’n(ﬂ))<t).
acU\{u}

The inequality (i) is justified by the union bound and the equality (ii) is follows from
the fact that the codewords are selected independently, i.e., Cy, (@) is independent of
Y and C,(u).

Note that for any @ and Y, Pr <dh (Y™, Cu(0) < t) =y (")27". Hence, as a

final result we have
t—1 n t—1
D, ) < n(1-R)
)ams (-5 ()

=

Pr (u ¢ U™

Pr (decn(Y”) #+u, u€ U(Y") Du,t)
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— Pr (3@ U\ {u}, dy(Y™,Co(it)) =t, dec,(Y™")

)
< 3 Pr(dh(Y”,Cn(a)):t, dec,(Y™) = Dw)
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where (i) follows from union bound. Now, for any u € U \ {u}, observe the factoriza-
tion below.

Pr (dh(Y”, Co(i)) =t, dec,(Y™) = ii

Du,t)

— Pr (dh (Y™, Co(it)) =t ‘ Du,t> Pr (decn(Y") = ‘ Duy, (Y™, Colit)) = t)
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Again, (ii) is justified by the independent codeword selection procedure. To upper
bound the probability of the remaining event, note that the conditioned events D, ;
and dy, (Y”,Cn(ﬂ)) = t imply there are at least 2 codewords in the decoding set

U(Y™). Therefore the probability of @ being selected randomly at uniform is less

1 .
than 5. ie.,

1
Pr (decn(Y") o ‘ Duy, dy (Y™, C (1)) = t) -
Combining the results, finally we obtain

Pr (decn(Y") +u, ue U™

D t) < Lm o~ n(1=F)
wt) =2\t

Let D, := {U = u}. ie., the true codeword is u. Then we have
Pr <decn(Y”) £ u ‘ Du> - i Pr (decn(Y”) £u ( Dw) Pr (dh (Y™ Colw)) =1 ‘ Du>.
=
and
Pr (dh (Y™, Co(u)) =t ) Du> — Pr (BSC(p) fips t bits) - CL) P - p) .
Furthermore,
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where (i) is obtained from the results of part (a) and (b). The above expression is a
probability so it also has to be less than 1.

t—1
1
e, ) [ Du) < {157 (4t (e

Combining all the above, we obtain

Pr(decn(Y”) ”: u‘Du> < g (?) {(1—p)" mln{ t: ( ) +%(Z‘) 2—”<1—R>}.

This expression does not depend on the choice of u. The conditioning can be removed.

Pr(dec,(Y") #U) < Z( > (I—p)"~ min{l,i (ZL) 9—n(l-R) +%(TZ> 2n<1R)}.

=0

Observe that Pr(dec,(Y™) # U) = E¢,[Pr(dec,(Y™) # U|C,,)], that is, the average
error probability averaged over the selection of codebooks. Therefore, there must
exist a codebook (), that satisfies

Pr(dec,(Y") # U|C,) <Z( > (1—p)" mln{ i( ) +%(7;)2n<13>}.
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(d) As in the hint, define p :=t/n and p: =1 — p.
n t
N\ i Y\ i n—i
1:2(@,););) > (i)pp
i=0 i=0

For t < n/2, note that p < % and p > % Thus p'p"~" is decreasing in 7. Then we

have . .
n i ~n—1 n —n— n —n
=0 =0 i=0

from which we conclude Y, (") < 2nhale),

(e) Tt suffices to prove part (i). A similar proof follows for part (ii).
For part (i), we have

Ing] o\ o [nq] n\ piph—i .
Z(')pzﬁnz:2<.)_t ¢q .
1=0 ¢ 1=0 v/ 44

We know ¢ < p, therefore § > 1 and g < 1. Elgn*l is then increasing in ¢ and

PPt PPt o nDa(alp)
a9 9 q

for any ¢ < |ng|. This yields

nal nal
2 : imn—i < § : ign—ig—nD(4llp) < 9—nD(dllp)

i=0 i=0
For part (ii), we have £ < 1 and g > 1. Thus,

PP _ 5-nDa(dllp)
qaq

for any ¢ > ng. A similar proof follows from here.

(f) It is known that the capacity C' = 1 — hy(p) for BSC(p). Recall that 1 — hy(p) is a
continuous and decreasing function on [0, 1/2]. Hence, for any R < 1—ha(p), p < 1/2
we can find a p < ¢ < 1/2 such that R < 1 — ha(g). In part (c), we proved

Pr <decn(Y”) 4 U) < g (7;) P (1—p)"~* min {12 (?) o-n(1=R) 4 %(D 2—”<1—R>} .

Taking such ¢ described above, we can split the outer sum into two parts.
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For S, we have

Lng) t
S < n—t n 2—n(1—R)
=3 (1)po-z ()

)

Note that ¢ < ng < n/2. Using the result of part (d), we have

[nq] t lng|
n
Sl < g (t)pt(l —p)nit E ( >2 n(1-R) < Q—n n(1-R) § < ) n t2nh2(t/n)
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where (i) follows from the fact that ZWJ (7)p'(1 — p)"" < 1 and (ii) follows from

hy(.) is increasing in [0, 1] and £ < ¢ < 3

For S;, we have

)
S, < Z < ) —p)t < 2T nDs(qllp)

t=[ngq]

where (iii) is obtained from part (e). Combining all the upper bounds, we obtain the
final upper bound as

Pr(dec,(Y") # U) < 27" 0@ =) 4 g=npataly)
for any ¢ satisfying p < ¢ < % and 1 — ha(q) > R. This shows that
Pr(decn(Y") # U) — 0 as n — oo.

In part (c), we have shown that such {C,} exists.



PROBLEM 2 (FEINSTEIN’S THEOREM).

(a)

Z(W) =W (0l0)W(0[1) + vW(A0)W (1]1) = 2¢/p(1 — p).

To easily calculate V (W), let p:= 1 — p and note that
1 2p p.- D
log2(2p)7 wW.p. p

with E[i(X;Y)] = I[(X;Y) = 1 — hy(p). Therefore, its variance is straightforwardly
calculated as

V(W) = Var(i(X‘ Y)) = E[(((X;Y) — I[(X;Y))?
p[l+logyp — (1+plogyp+ plog,p)|° + p[l +logyp — (1 + plog, p + plog, p))*

= pp° (10g2 ) +p°p (10g2 )
2
=pp (10852 )
D

(b) Suppose B;, i > 1 are i.i.d. and bounded random variables which can take values on
the interval [a, b]. For this case, given ¢t > 0, Hoeffding’s inequality can be expressed

Pr (Z B; <n(E[B] — t)) < exp (%) :

i=1

For our case, we know that i(X7;Y]") = log, (%) = log, <H?:1 WV(V}E%» =

Z?Zl log, (WV([}?%U = Z i(X;;Y;) since the channel is memoryless and X;s are

i.i.d. Moreover, i(X;Y) only takes the values log,(2p) and log,(2p). Applying Ho-
effding’s inequality, we obtain

Pr(i(X™; V") < n(R+6)) < Pr (i(X{‘;Y{‘) < n(I(X;Y) - (I(X;Y) - R~ 5)))

: eXp( e logz p/p)R ” )

e ( —2n(I — R—6)*pp >
X
P pp logg (p/p)?

< —n (I - R— 5)2Z2)

= exp :

(¢c) We do the variable change v = 1 — m. Note that 0 < v < 1 provided that
6 <I(X;Y)—R. We also have § = 5(I(X;Y) — R). Substituting this new variable,
we obtain

V)— R —_A VY PY)\2 72
€ < exp —n(I(X;Y)-R—-73I(X;Y)—-R)) Z | 9=mII(XY)=R)
2,
— I(X;Y)— R))*Z2 —ny(I[(X;Y)—R
o (MUK “RPZY | ((XGY) - R))
2V, log, e



Since we are able to choose § freely as long as 0 < § < I(X;Y) — R, this corresponds
to choosing «y freely as long as 0 < v < 1. Observe that the inequality is satisfied for
all allowed choices of §, and hence for all allowed choices of . The right hand side
(RHS) can be optimized to obtain a tighter upper bound as

(—n(v(f(X;;p) - R))ZZ,%) oo (_ng; - R)) |

e < min exp
0<y<1

Note: One could extend the optimization interval and replace the strict inequalities
with weak inequalities in order to obtain a compact region and attain the minimum.
This does not change the optimal value of RHS as the minimum is clearly not attained
at 0 or 1.



PROBLEM 3 (STRONG CONVERSE).

a) As the channel is BSC(p), we have the probability

Lng] n\ ‘
W V00 1 Bl =) = 3 (7)1

Therefore by the result of 1) e) we have

W™ (V(u) N Byw(w)|U = u) < 27"P2lp)

b) As y" # B,n(u), we also know that dg(y™, enc(u)) > ng. This implies that
W (407 = ) = 0" (1) < a0y g By
Where the last inequality is due to the fact that p < (1 — p).

¢) We have the correct decoding probability equals to:

P(dec(Y™) = ulU = u)
P(Y Y(u)|U = u)
PY"eYu)NY" € Byp(u)|U=u)+PY" € Yu)NY" ¢ B, ,(u)|U = u)
P(Y™ € Byu(u)|U = u) + [Y(u)|p"(1 — p)"*~

5-nDs(allp) |y )] g yngtonpinci—atoxci

IN

IN

_ 9-nDa(alln) |y( Y] 1ot~ Datalo)
2n

d) From the result in (c), we have the following inequality

P(dec(Y") =U) = > P(dec(Y") = u|U = u)P(U = u)
uel

< R Y gnataln) | |y2(:)|2n<1_h2(q)_p2(q|p))

uel

_9nR (2”Ranz(q|p> 4 gn0ha(o)-Datal) 3 Y (“)|>

uelU
_ 2_nD2(q||p) + 2—n(R—1+h2(Q)+D2(’1||P))

e) Observe that the function f(h) = 1 + hlog,p + (1 — h)log,(1 — p) is continuous.
Hence if f(a) = kq, f(b) = ky and k* € [kq, kp), there is a value ¢ € [a,b] such that
f(¢) = k*. We note that f(p) = C and f(0) = 1. Hence if we take k* = min(1, &),
there is always a ¢ € [0, p] such that:

C < f(k*) = min (1, R";C) <R

f) If we define
f(h) =14 hlogyp+ (1 —h)log,(1 — p),
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then the result of d. is equal to:
P(dec(Y™) = U) < 27"P2Ullp) 4 9=n(B=f(a) Vg < p

By the result of e., we know that there exists ¢* < p such that f(¢*) < Rif R > C.
Plugging this ¢x to our inequality gives us

P(dec(Y™) = U) < 27nP2(d"llp) 4 9=ne)
where ¢ = R — f(q*) > 0. Because Dy(q*||p) > 0 as ¢* # p, then we have

lim P(dec(Y")=U)=0.

n—0o0

This implies that

lim P(dec(Y") # U) =1— lim P(dec(Y")=U) = 1.

n—o0 n—o0



