ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 36	Information Theory and Coding
Final exam solutions	Jan. 29, 2019

Problem 1.

- (a) $\Pr(\mathbf{X}(m) = \mathbf{X}(m')) = \sum_{\mathbf{x}} \Pr(\mathbf{X}(m) = x) \Pr(\mathbf{X}(m') = x) = \sum_{\mathbf{x}} \Pr(\mathbf{X}(m) = x)^2$. Since $\mathbf{X}(m)$ is uniformly distributed over $\{0, 1\}^n$, we find $\Pr(\mathbf{X}(m) = \mathbf{X}(m')) = 2^{-n}$.
- (b) Taking the hint, $\Pr(G_i = 1 \mid G_1 = \cdots = G_{i-1} = 1)$ is the probability that $\mathbf{X}(m)$ is different than i 1 values. Since $\mathbf{X}(m)$ equals each value with the probability found in (a), we see that $\Pr(G_i = 1 \mid G_1 = \cdots = G_{i-1} = 1) = 1 (i-1)2^{-n}$.
- (c) By the chain rule $\Pr(G_1 = \cdots = G_M = 1) = \prod_{i=1}^M \Pr(G_i = 1 \mid G_1 = \cdots = G_{i-1} = 1) = \prod_{i=1}^M (1 (i-1)2^{-n}).$
- (d) The value of q is already computed in (c). With the hint, $q \leq \prod_{i=1}^{M} \exp(-(i-1)/2^n) = \exp(-\sum_{i=1}^{M} (i-1)/2^n)$
- (e) By (d), $q \leq \exp(-M(M-1)/2^{n+1})$. When R > 1/2, M(M-1) grows faster than 2^n , thus $q \to 0$ as n gets large.
- (f) With $p(\mathbf{x})$ denoting $\Pr(\mathbf{X}(m) = \mathbf{x})$, the probability in (a) is $\sum_{\mathbf{x}} p(\mathbf{x})^2$. By the Cauchy-Schwartz inequality, $\left[\sum_{\mathbf{x}} p(\mathbf{x})\right]^2 \leq \sum_{\mathbf{x}} p(\mathbf{x})^2 \sum_{\mathbf{x}} 1$, thus we get that $\Pr(\mathbf{X}(m) = \mathbf{X}(m')) \geq 2^{-n}$. This then implies that $\Pr(G_i = 1 | G_1 = \cdots = G_{i-1} = 1) \leq 1 (i 1)2^{-n}$, and consequently, the value of q in (d) is an upper bound to $\Pr(G_1 = \cdots = G_M = 1)$.

Moral of the story: a randomly constructed binary code with rate larger than 1/2 will (with high probability) have two (or more) identical codewords, and thus its $P_{e,\max} \ge 1/2$, no matter on what channel it is used. This is the reason why we go through $P_{e,ave}$ and then expurgate to construct a code with small $P_{e,\max}$ rather than trying to prove the existence of codes with small $P_{e,\max}$ by random coding directly.

Problem 2.

- (a) Write $I(X^2; Y^2) = H(X^2) H(X^2|Y^2)$. By the chain rule and that conditioning reduces entropy $H(X^2|Y^2) \leq H(X_1|Y_1) + H(X_2|Y_2)$. Moreover when X_1 and X_2 are independent $H(X^2) = H(X_1) + H(X_2)$. The conclusion follows.
- (b) The capacity of the effective channel is given by $C = \max p_{X^2} I(X^2; Y^2)$. By (a) $I(X^2; Y^2) \ge I(X_1; Y_1) + I(X_2; Y_2)$. Consequently, $C \ge \max_{p_{X^2}} I(X_1; Y_1) + I(X_2; Y_2) = C_1 + C_2$ where $C_i = \max_{p_{X_i}} I(X_i; Y_i)$ is the capacity of the *i*'th channel.
- (c) The individual channels are BSC's with crossover probability 1/2, so $C_1 = C_2 = 0$. However $I(X^2; Y^2) = H(Y^2) - H(Y^2|X^2) = H(Y^2) - H(Z^2) = H(Y^2) - 1$. Since Y^2 can take only 4 possible values, $H(Y^2) \leq 2$. On the other hand, choosing X_1 and X_2 to be independent and equally likely to be 0 or 1 makes Y^2 uniformly distributed on its four possible values, so the capacity of the effective channel is C = 1.

Moral of the story: memory in the channel noise increases capacity.

Problem 3.

- (a) As H had four columns the blocklength n = 4. Observe that we can rearrange $H\mathbf{x} = \mathbf{0}$ to solve for x_1, x_2 in terms of x_3, x_4 . As there are 3^2 possibilities for (x_3, x_4) the code has M = 9 codewords. The code rate is thus $\frac{1}{2} \log 3$.
- (b) The receiver receives $\mathbf{y} = \mathbf{x} + \mathbf{z}$ where \mathbf{z} is either the zero vector, or it has only a single nonzero component z_i which can take the value 1 or 2. With h_i denoting the *i*th column of H, $H\mathbf{y} = H\mathbf{z}$ is either zero, or takes on the value h_i (if $z_i = 1$) or $2h_i$ $(z_i = 2)$. Since the collection of eight vectors $h_1, 2h_1, h_2, 2h_2, h_3, 2h_3, h_4, 2h_4$ are all distinct and different from zero, the receiver can identify if z is the zero vector or the i and the value of z_i from $H\mathbf{y}$
- (c) This will increase the block length to 5 and the number of codewords to 3^3 yielding a new rate of $\frac{3}{5} \log 3$ which is larger than the rate found in (a).
- (d) We need to ensure that the new column and its multiple by 2 is different from the zero and the collection of 8 vectors above. We see that this is not the case for any of the vectors listed.
- (e) Now z_i can take on only the value 1 (but not 2). Thus to ensure detection and correction we only need h_i 's to be distinct and different from zero. Now, all columns except the zero column in (d) can be added.

Problem 4.

- (a) This was found in class to be the pentagon given by the constraints $R_1 \leq 1, R_2 \leq 1, R_1 + R_2 \leq 3/2$. Note that the highest rate R for which (R, R) is in the capacity region is R = 3/4.
- (b) At the end of phase 1, both the encoders know $Y^k = U_1^k + U_2^k$. Since each knows its own message each can discover the message of the other. Consequently, they can both compute Q.

The receiver knows the value of U_{1i} and U_{2i} for those *i*'s for which Y_i is 0 or 2. For those *i*'s for which $Y_i = 1$ (i.e., i_1, \ldots, i_T) it knows that one of U_{1i} and U_{2i} is 0 and the other is 1, but does not know which. So, unless T = 0, it does not know Q.

(c) By (b) both encoders know Q and thus $v_1, \ldots, v_{\lceil S \rceil}$. They can then set

$$(U_{1,k+i}, U_{2,k+i}) = \begin{cases} (0,0) & \text{if } v_i = 0\\ (1,0) & \text{if } v_i = 1\\ (1,1) & \text{if } v_i = 2, \end{cases} \quad i = 1, \dots, \lceil S \rceil.$$

to ensure that the receiver receives $v_1, \ldots, v_{\lceil S \rceil}$. Note that at the end of phase 2 the receiver can compute Q, and thus find U_1^k and U_2^k . The two phase scheme thus reliably sends k bits from each transmitter to the receiver.

- (d) Note that during the first phase $\Pr(Y_i = 1) = \frac{1}{2}$. Thus, $E[T] = \frac{1}{2}k$, and $E[S] = \frac{1}{2}k \log_3 2$. Consequently $E[k+S] = \left(1 + \frac{1}{2}\log_3(2)\right)k$.
- (e) Set $c = 1 + \frac{1}{2}\log_3 2$. Since $k + S \le N < k + S + 1$, we find $ck \le E[N] < ck + 1$. Thus $k/E[N] \to 1/c$.

(f) Note that in the first phase Y_1, \ldots, Y_k are i.i.d. Thus, by the law of large numbers, as k gets large, $T/k \to 1/2$ with probability 1. Consequently the rate $R = k/N \to 1/c$ with probability 1. As $\log_3 2 < 2/3$, $c \le 4/3$ and thus R > 3/4 with probability 1.

Moral of the story: Feedback allows us to achieve the rate pair (R, R) > (3/4, 3/4) which is outside of the region computed in (a). Thus, feedback may enlarge the capacity region of a memoryless multiple access channel. Recall that this was not the case for the single user channel — feedback does not increase the capacity of a single user memoryless channel.