PROBLEM 1. Suppose $U = V$ are additive groups with group operation \oplus. (E.g., $U = V = \{0, \ldots, K - 1\}$, with modulo K addition.) Suppose the distortion measure $d(u, v)$ depends only on the difference between u and v and is given by $g(u \ominus v)$. Let $\phi(D)$ denote $\max H(Z) : E[g(Z)] \leq D$.

(a) Show that $\phi(D)$ is concave.

(b) Let (U, V) be such that $E[d(U, V)] \leq D$. Show that $I(U; V) \geq H(U) - \phi(D)$ by justifying

$$I(U; V) = H(U) - H(U|V) = H(U) - H(U \ominus V|V) \geq H(U) - H(U \ominus V) \geq H(U) - \phi(D).$$

(c) Show that $R(D) \geq H(U) - \phi(D)$.

(d) Assume now that U is uniform on U. Show that $R(D) = H(U) - \phi(D)$.

PROBLEM 2. Suppose $U = V = \mathbb{R}$, the set of real numbers, and $d(u, v) = (u - v)^2$. Show that for any U with variance σ^2, $R(D)$ satisfies

$$h(U) - \frac{1}{2} \log(2\pi eD) \leq R(D) \leq \left[\frac{1}{2} \log(\sigma^2/D)\right]^+.$$

PROBLEM 3. Consider a two-way communication system where two parties communicate via a common output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by x_1 and x_2 respectively. Let $p(y|x_1, x_2)$ model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

$$\text{enc}_1: \{1, \ldots, 2^{nR_1}\} \rightarrow \mathcal{X}_1^n \quad \text{dec}_1: \mathcal{Y}^n \times \{1, \ldots, 2^{nR_1}\} \rightarrow \{1, \ldots, 2^{nR_2}\}$$

$$\text{enc}_2: \{1, \ldots, 2^{nR_2}\} \rightarrow \mathcal{X}_2^n \quad \text{dec}_2: \mathcal{Y}^n \times \{1, \ldots, 2^{nR_2}\} \rightarrow \{1, \ldots, 2^{nR_1}\}$$

with which the parties encode their own message and decode the other party’s messages. (Note that when a party is decoding the other party’s message, it can make use of the knowledge of its own message).

We will say that the rate pair (R_1, R_2) is achievable, if for any $\epsilon > 0$, there exist encoders and decoders with the above form for which the average error probability is less than ϵ.

Consider the following ‘random coding’ method to construct the encoders:

(i) Choose probability distributions p_j on \mathcal{X}_j, $j = 1, 2$.

(ii) Choose $\{\text{enc}_1(m_i) : m_1 = 1, \ldots, 2^{nR_1}, i = 1, \ldots, n\}$ i.i.d., each having distribution as p_1. Similarly, choose $\{\text{enc}_2(m_i) : m_2 = 1, \ldots, 2^{nR_2}, i = 1, \ldots, n\}$ i.i.d., each having distribution as p_2, independently of the choices for enc_1.

For the decoders we will use typicality decoders:

(i) Set $p(x_1, x_2, y) = p_1(x_1)p_2(x_2)p(y|x_1, x_2)$. Choose a small $\epsilon > 0$ and consider the set T of ϵ-typical (x_1^n, x_2^n, y^n)’s with respect to p.
(ii) For decoder 1: given y^n and the correct m_1, dec$_1$ will declare \hat{m}_2 if it is the unique m_2 for which $(\text{enc}_1(m_1), \text{enc}_2(m_2), y^n) \in T$. If there is no such m_2, dec$_1$ outputs 0. (Similar description applies to Decoder 2.)

(a) Given that m_1 and m_2 are the transmitted messages, show that $(\text{enc}_1(m_1), \text{enc}_2(m_2), Y^n) \in T$ with high probability.

(b) Given that m_1 and m_2 are the transmitted messages, and $\hat{m}_1 \neq m_1$ what is the probability distribution of $(\text{enc}_1(\hat{m}_1), \text{enc}(m_2), Y^n)$?

(c) Under the assumptions in (b) show that $\Pr\{(\text{enc}_1(\hat{m}_1), \text{enc}_2(m_2), Y^n) \in T\} \approx 2^{-nI(X_1;X_2|Y)}$.

(d) Show that all rate pairs satisfying $R_1 \leq I(X_1;Y|X_2)$, $R_2 \leq I(X_2;Y|X_1)$ for some $p(x_1, x_2) = p(x_1)p(x_2)$ are achievable.

(e) For the case when X_1, X_2, Y are all binary and Y is the product of X_1 and X_2, show that the achievable region is strictly larger than what we can obtain by ‘half duplex communication’ (i.e., the set of rates that satisfy $R_1 + R_2 \leq 1$.)

Problem 4. Let

$Z_1 = \begin{cases} 1, & p \\ 0, & q \end{cases}$, \quad $Z_2 = \begin{cases} 1, & p \\ 0, & q \end{cases}$

and let $U = Z_1Z_2$, $V = Z_1 + Z_2$. Assume Z_1 and Z_2 are independent. Note that we have a joint distribution induced on $U \times V$. Suppose that (U_i, V_i) are i.i.d according to the distribution induced as above. Sender 1 compresses U^n at rate R_1 and sender 2 compresses V^n at rate R_2.

(a) Find the Slepian-Wolf rate region for recovering (U^n, V^n) at receiver.

(b) What is the residual uncertainty that receiver has about (Z_1^n, Z_2^n)? i.e. $H(Z_1^nZ_2^n|U^nV^n)$.

Problem 5. Suppose we are told that for any n and M, for any binary code with block-length n, with M codewords, the minimum distance d_{min} satisfies $d_{\text{min}} \leq d_0(M,n)$ where d_0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d_0 can be improved to the following upper bound: for any n, M, for any binary code with blocklength n with M codewords $d_{\text{min}} \leq d_1(M,n)$ where $d_1(M,n) = \min_{k: 0 \leq k \leq n} d_0([M/2^k], n-k)$.

(b) Consider the trivial bound $d_0(M,n) = \begin{cases} n, & M \geq 2 \\ \infty, & M \leq 1 \end{cases}$

What is the bound d_1 constructed via (a) for this d_0?
(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \leq i \leq n$ and let a_1, \ldots, a_M be the ith bits if the M codewords. Suppose M_1 of the a_m’s are ’1’ and M_0 of them are ’0’. Show that

$$\sum_{m=1}^{M} \sum_{m' = 1}^{M} d_H(a_m, a'_m) = 2M_0M_1 \leq M^2/2.$$

(d) Show that for any binary code with $M \geq 2$ codewords x_1, \ldots, x_M of blocklength n

$$M(M - 1)d_{\min} \leq \sum_{m=1}^{M} \sum_{m' = m}^{M} d_H(x_m, x_m') \leq nM^2/2;$$

consequently, $d_{\min} \leq \lfloor \frac{1}{2} n \frac{M}{M - 1} \rfloor$.

3