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PROBLEM 1.

(a) Suppose x and x’ are two codewords in C. Then for Vi =0,1,...,m — 1,

~1
To+T104+ -+ a0 =0
! / / -1
Ty + v+ o+, 00 =0
['herefore,

(o +20) + (1 + 7))y + -+ (Tpy + 2, ot =0 forVi=0,1,...,m— 1.

7

which shows x 4+ x’ is also a codeword.

(b) (D) = g+ 1D + -+ + 2,1 D" ! is a polynomial of degree (at most) n — 1 and
(zo,...,Tn_1) is a codeword if ag, vy, ..., am,—1 are m of its roots. This means

2(D) = (D — ag)(D — ai) ... (D — am_)h(D) = g(D)h(D)

for some h(D). Note that h(D) can have degree (at most) n — m — 1. On the
other side, there is a one-to-one correspondence between the codewords of C and
degree n — 1 polynomials. Since g(D) is fixed for all codewords, a polynomial z(D)
corresponding to a codeword x is determined by choosing the coefficients of h(D) =
ho +hiD+ -+ hy_p1 D™ 1 Since h; € X for j =0,1,...,n —m — 1 we have
¢"~™ different h(D)s and, thus, ¢"~™ codewords.

(c) For every column vector u = [ug, Uy, ..., un 1], Au = [u(1),u(B),...,u(B"H)]T.
Consequently, Au = 0 means u(D) has n roots which is impossible (since it is a
polynomial of degree m — 1 < n).

(d) Using the same reasoning as in (c) one can verify that x = (zy,...,2,) is a codeword
iff xA = 0. This means A is the parity-check matrix of the code C. Since the code
is linear, using Problem 4 of Homework 11 we know that has minimum distance
d iff every d — 1 rows of H are linearly independent and some d rows are linearly
dependent. That A has rank m implies there are no m linearly dependent rows thus
d > m + 1. On the other side, we know from the Singleton bound that a code with
q"~™ codewords and block-length n has minimum distance d < m + 1. Thus we
conclude that d =m + 1.

PROBLEM 2.
(a) For every 0 < p <1, define p := 1 — p. We have:
ha(p) = —plogp — plogp = —plogp — plogp = ha(p). (1)
On the other hand, it is easy to check that for every 0 < p/,p” < 1, we have:
pxp’=pxp=p*p and pxp’=p xp".
Now (1) implies that
hao(p % p") = ha(p" % P") = ha(p % P") = ha(p" * p"). (2)

Let p' = P[X; = 1] and p” = P[X, = 1]. We have the following:



P« p”. Therefore, H(X; @& X3) = ha(p * p").

e Since H(X7) = hao(p1), then we have either p’ = p; or p’ =1 —p;. Le., we have
pp=porp=1-p =p.

e Since H(X5) = ha(p2), then we have either p” = py or p” = 1 — ps. Le., we have
pr=p'orpy=1-—p"=p"

Now (2) implies that H(X; ® Xs) = ho(p' * p”) = ha(p1 * p2).

(b) We have H(X1|Y) =3 o, H(X1[Y = y)Py(y) = 3 ey ha(p1(y))a(y).

Now for every y € Y, X; and X, are independent conditioned on Y = y. Moreover,
H(X1|Y = vy) = ha(pi(y)) and H(Xs|lY = y) = H(X2) = ha(p2) since Xy and Y are
independent. Therefore, part (a) implies that H(X; @ Xs|Y = y) = ha(p1(y) * pa).

We conclude that

H(X; @ Xo|Y) = ZH(X1 © XolY =y)Py(y)

yey
— Z hao(p1(y) * p2)q(y) = Z ha(p2 * p1(y))a(y).
yey yey

(¢) Note athat p2*p = p(1 — p2) + p2(l — p) = PBp + pa, where f = 1 —2py > 0. Let
_ gphe(paxp)  gih2(Bptp2) Bhh(Bp+p2)
g(p) = z;%hQ(p) _ pa%hQ(p) = Ay We have

_ B2h3(Bp + p2)hiy(p) — Bhy(p)hy(Bp + p2)

/
g\p
i )
_ Bhy(Bp + p2) 5 (p) /Bh'z(p) B hlz(ﬁp‘ﬂb)]
hy(p)? hs(p)  h5(Bp + p2)
Note that hi(p) = log 1%” and hj(p) = m, which implies that h%(Sp + p2) < 0 and
hy(p) < 0. Therefore, W > 0 and so it is sufficient to show that we have
2

Bh/z(p) _ hy(Bptp2)
hy(p)  hy(Bp+p2)

> 0. Now define a = 1 — 2p. It is easy to check the following:
o p= %(1 —a).

° l—p:%(l—l—a).

o Op+p2= %(1 —af).

o 1—(Bp+p2)=3(1+ap).

Therefore, we have

hy(p) 1—p B2, . l+a
/Bh’g’(p) = —5(In2)p(1 — p) log S =T (1—0a®)log —.
and
hy(Bp +p2) 1-fp—py _ 2 o 1+af
Mt m) ~(2)(Bp+p2)(1=fp=ps)log —5 == = ——=(1= (af)) log — .



k
Using the formula log(1 + x) = Z(—l)k’lx we get

k'’
k>1
14+2z L xk (—x)k
log -—— =log(1 + z) — log(1 — ) = <Z<—1)’f 1?> - < (—1)F 1%)
k>1 k>1
k-1 a at
=> (-1 +1)E:2 > -
k>1 k>1
k is odd
Therefore,
ok
—(1— 1 = -2 = —2x — 2
(1 - #)og > 2y
E>1 E>1 k>3 k>3
k is odd k is odd k is odd k is odd
1 1 i
k>3
k is odd
Hence,
hy(p) Bln2 9 l+a pfln2 1 1\ .
— 1-— | = -2 2 —_— =
B ) p (L)l 1 o2 (5%
2 k>3
k is odd
~afln2  In2 1 1 &
T 2 (k: —2 k) po”,
k>3
k is odd
and

ho(Bp+p2)  In2 l+af 2| 11
o = R0 - sl s = 2052 3 (k_Q k)w)k

In2 In2 1 1
:_Oéﬁn +n_ (___) ﬁkOék.
>

2 2
k is odd
We conclude that
h,(p hy(6p + p In2 1 1 (*)
pra®) _Talppt i) _In2 51 ) (B=B8%a" =0,
hy(p)  h5(Bp + p2) 2 = k—2 k

k is odd
where (x) follows from the fact that 8 = 1 —2p, < 1 which implies that 3% < 3. Therefore,
g'(p) > 0 and so g(p) is increasing. We conclude that the function f is convex.

(d) We have
H(X, & XplY) = Zh2(p2 *p1(y)q(y) = th(pz «hy ' (H(X1Y =v)))aq(y)

yey yey
=" FHEXY =y))ay) . f(ZH(XllY = y)q(y))
yey yey

= f(H(XﬂY)) = ho (p2 * h;l(H(leY))) = h2(p2 *p1) = h2(p1 *p2),

where (k) follows from the convexity of the function f.

3



(¢) For every y; € Vi, let 0 < pi(y1) < % be such that H(X;]Y; = y1) = ha(pi(n1))
and let ¢1(y1) = Py, (y1). Similarly, for every ys € s, let 0 < po(ys) < % be such that
H(X5|Ys = ya) = ha(pa(y2)) and let go(y2) = Py,(y2). For every y; € )Y, define the
mapping f,, : [0,1] = R as f,,(h) = ha(p1(y) * hy ' (h)). Part (c) implies that f,, is convex
for every y; € YV;. We have

H(X; & Xs|Y1,Ys) = Z Z ha(p1(y1) * p2(y2)) Py vs (Y1, y2)

Y1EV1 Y2€V2

= Z Z ha(p1(y1) * P2(y2))q1 (Y1) q2(y2)

Y1€V1 Y2€Y2

= > @) Y ha(plyn) * hy' (HXG|Y: = 12)) ) aa(y2)

= ygl @ (1) y§2 Fon (H(Xa|Yz = 1)) @2(32)

2 ;y a1 () s ( ;y H(Xa|Y2 = 12)as(v2)

_ ylig;}lql(yl)fyl(;z(X;YQ)) = ; Q1 (y)ha(pr(y1) * hy ' (H(X5]Y2)))
= ygl Q1 (y1)ha(p1(yr) * p2) = ylezyl ha(pex by (H(Xa Y1 = y0)) ) (1)
- 3 S = () N > HOG: = wlatn)

= f(H(Xi 1)) = hz(pz * hgl(H(Xl\K))) = ha(p2 * p1) = ha(p1 * p2),

where (x) follows from the convexity of the functions {f,, : y1 € M1} and (%) follows from
the convexity of f.

PROBLEM 3.

(a) Any codeword of C is of the from (a,a @ b) with a € C; and b € C;. Given two
codewords (', w’ @ v’) and (u”,u” @ v”) of C, their sum is (u,udv) with u = v’ ®u”
and v = v @ v”. Since C; and Cs are linear codes u € C; and v € Cy. Thus the sum
of any two codewords of C is a codeword of C and we conclude that C is linear.

(b) If (u,v) # (u/,v’), then either u # u’, or, u = v’ and v # v'. In either case
(ujudv) #£ (W|u' @ Vv'): in the first case the first halves differ, in the second case the
second halves differ. Thus no two of the (u, v) pairs are mapped to the same element,
of C, and the code has exactly M; M, elements. Its rate is % log(M1M,) = %Rl +%R2.

(c) Asv=uduaev,
wy(v) =wg(ududv) <wg(u)+wy(udv)

by the triangle inequality. Noting that the right hand side is wy ((uju®v)) completes
the proof.

(d) If v.= 0 we have (uju @ v) = (uju) which has twice the Hamming weight of u.
Otherwise (c) gives wy((ujlu @ v)) > wy(v).



(e) Since C is linear its minimum distance equals the minimum weight of its non-zero
codewords. If (uju @ v) is non-zero either v.# 0, or, v. = 0 and u # 0. By (d),
in the first case wy((ulu @& v)) > wy(v) > dy, in the second case wy((ujlu @ v)) >
2wy (u) > 2dy. Thus d > min{2d;, dy}.

(f) Let up be the minimum weight non-zero codeword of C; and let vy be the minimum
weight non-zero codeword of Cy. Note that (ug|ug) is a non-zero codeword of C
(corresponding to the choice u = ug, v = 0). It has weight 2d;. Similarly, (0|vy) is
also a non-zero codeword of C (corresponding to the choice u = 0, v = vg). It has
weight dy. Consequently d < min{2d,,d>}. In light of (¢) we find d = min{2d;, ds}.

This method of constructing a longer code from two shorter ones is known under several
names: ‘Plotkin construction’, ‘bar product’, ‘(u|u + v) construction’ appear regularly in
the literature. Compare this method to the ‘obvious’ method of letting the codewords to
be (u|v). The simple method has the same block-length and rate as we have here, but
its minimum distance is only min{d;, ds}. The factor two gained in d; by the bar product
is significant, and many practical code families can be built from very simple base codes

by a recursive application of the bar product. Notable among them are the family of
Reed-Muller codes.

PROBLEM 4.

(a) We have

Z:(1—77) w.p. 1/2

(22— 2 (1 —2Z:+ Z3) wp. 1/2

7220 -Z)(0+ Z) wp. 1/2

B V2 —=2)Z:(1-2)* wp. 1/2

_ VZi(1 = Zi)\ Z:(1 + Z,) w.p. 1/2
VZi1=Z) @ =Z)1 = Z) wp. 1/2

_ T Zi(1+ Z;) w.p. 1/2

- VA=) {\/(2 “ZYA = Z) wop. 1/2

_o, {f1<zi> w.p. 1/2

Qi1 =V Zig1(1 = Zi1) = {\/

where f1(z) = /z(z 4+ 1) and fo(z) = /(2 — 2)(1 — 2).

(b) We have ye i1
a- zZ+
hil#) = 2\/z(z+1)
A/z2(z+1) — (22 + 1)%
1(2) = 2
(2 2zt 1))
_ 42(z+1) — (22 + 1)? _ -1 <o
4(2(z+1))? A(2(z+1))°



Therefore, f; is concave. By noticing that fo(z) = f1(1 — 2), we obtain:

R+ ) = 1)+ 5= =2 (3A6)+ 370 -2)

where (%) follows from the concavity of f;. We have

E[Qi+1 ‘ Zoy- -y Zz’} = %fl(Zi)Qi + %fZ(Zi)Qi = %(fl(zi) + f2(Z:))Qi < pQi,

V3 1,

where p = °

We will show the claim by induction on ¢ > 0. For i = 0, we have Zy = 2, with
probability 1. Therefore, EQy = 1/20(1 — 20)-
It is easy to that the function [0,1] — R defined by z — 1/z(1 — z) achieves its

1 1 1
maximum at z = %, and so EQy = v/ z0(1 — 2zp) < 5 (1 — 5) =3 Therefore, the

claim is true for 7 = 0.

Now suppose that the claim is true for ¢ > 0, i.e., EQ; < %pi. We have

(%) . .
EQiy1 = E [E[Qi+1 ’ Zoy .y Zz]] < E[in] = PE[Qi] < p- §pl = §Pz+1,

where (x) follows from Part (b) and (%) follows from the induction hypothesis. We
conclude that EQ; < %pi for every ¢ > 0.

By noticing that § < z < 1 — ¢ if and only if 2(1 — z) > d(1 — 9), we get:

P[Z; € (0,1 —0)] =P[Zi(1 - Z) > 6(1 = 8)] =P[/Zi(1 — Z) > \/3(1 = §)]

O EQ; &) i
=P[Qi > V(1 -9)] < 5(1@_5) =5 5&01—5)7

where (x) follows from the Markov inequality and (xx) follows from Part (c). Now
o
2,/6(1 =)

P[Z; € (6,1 —8)] — 0 as i gets large.

since p < 1, we have — 0 as 7 — oo. We conclude that

PROBLEM 5. As we should never represent a 0 with a 1, we are restricted to conditional
distributions with py;(1/0) = 0. Consequently, the possible py|; are of the type

pvw(0j0) =1 pyp(10) =0, pyu(0[l) =a pyu(ll)=1-aq,

and parametrized by o € [0,1]. For py|y as above, we have Pr(V =1) = (1 — «), and

E[d(U. V)] =) po(w)pvp(vlu)d(u,v) = a/2,

U,V

(U V) = HV) = HV|U) = ha (31 = @) = Lha(a) = f(a).



Thus R(D) = min{f(a) : 0 < o < min{1,2D}}, with f(a) = ho(3(1 — @) — 1hs(a
It is not difficult to check that f is a decreasing function on the interval [0, 1], nd thus
consequently

N

ho(3 — D) — the(2D), 0< D <
R(D) _ 2(2 ) B} 2( )7 = 1

0, D >3
Note that for D > % we can represent any u with a constant, namely v = 0, with average
distortion 1/2.



