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Problem 1.

(a) Suppose x and x′ are two codewords in C. Then for ∀i = 0, 1, . . . ,m− 1,

x0 + x1αi + · · ·+ xn−1α
n−1
i = 0

x′0 + x′1αi + · · ·+ x′n−1α
n−1
i = 0

Therefore,

(x0 + x′0) + (x1 + x′1)αi + · · ·+ (xn−1 + x′n−1)α
n−1
i = 0 for ∀i = 0, 1, . . . ,m− 1.

which shows x + x′ is also a codeword.

(b) x(D) = x0 + x1D + · · · + xn−1D
n−1 is a polynomial of degree (at most) n − 1 and

(x0, . . . , xn−1) is a codeword if α0, α1, . . . , αm−1 are m of its roots. This means

x(D) = (D − α0)(D − α1) . . . (D − αm−1)h(D) = g(D)h(D)

for some h(D). Note that h(D) can have degree (at most) n − m − 1. On the
other side, there is a one-to-one correspondence between the codewords of C and
degree n − 1 polynomials. Since g(D) is fixed for all codewords, a polynomial x(D)
corresponding to a codeword x is determined by choosing the coefficients of h(D) =
h0 + h1D + · · · + hn−m−1D

n−m−1. Since hj ∈ X for j = 0, 1, . . . , n −m − 1 we have
qn−m different h(D)s and, thus, qn−m codewords.

(c) For every column vector u = [u0, u1, . . . , um−1]
T , Au = [u(1), u(β), . . . , u(βn−1)]T .

Consequently, Au = 0 means u(D) has n roots which is impossible (since it is a
polynomial of degree m− 1 < n).

(d) Using the same reasoning as in (c) one can verify that x = (x1, . . . , xn) is a codeword
iff xA = 0. This means A is the parity-check matrix of the code C. Since the code
is linear, using Problem 4 of Homework 11 we know that has minimum distance
d iff every d − 1 rows of H are linearly independent and some d rows are linearly
dependent. That A has rank m implies there are no m linearly dependent rows thus
d ≥ m + 1. On the other side, we know from the Singleton bound that a code with
qn−m codewords and block-length n has minimum distance d ≤ m + 1. Thus we
conclude that d = m+ 1.

Problem 2.

(a) For every 0 ≤ p ≤ 1, define p := 1− p. We have:

h2(p) = −p log p− p log p = −p log p− p log p = h2(p). (1)

On the other hand, it is easy to check that for every 0 ≤ p′, p′′ ≤ 1, we have:

p′ ∗ p′′ = p′ ∗ p′′ = p′ ∗ p′′ and p′ ∗ p′′ = p′ ∗ p′′.

Now (1) implies that

h2(p′ ∗ p′′) = h2(p
′ ∗ p′′) = h2(p′ ∗ p′′) = h2(p

′ ∗ p′′). (2)

Let p′ = P[X1 = 1] and p′′ = P[X2 = 1]. We have the following:



• P[X1 ⊕ X2 = 1] = P[X1 = 1]P[X2 = 0] + P[X1 = 0]P[X2 = 1] = p′p′′ + p′p′′ =
p′ ∗ p′′. Therefore, H(X1 ⊕X2) = h2(p

′ ∗ p′′).
• Since H(X1) = h2(p1), then we have either p′ = p1 or p′ = 1− p1. I.e., we have
p1 = p′ or p1 = 1− p′ = p′.

• Since H(X2) = h2(p2), then we have either p′′ = p2 or p′′ = 1− p2. I.e., we have
p2 = p′′ or p2 = 1− p′′ = p′′.

Now (2) implies that H(X1 ⊕X2) = h2(p
′ ∗ p′′) = h2(p1 ∗ p2).

(b) We have H(X1|Y ) =
∑

y∈Y H(X1|Y = y)PY (y) =
∑

y∈Y h2(p1(y))q(y).
Now for every y ∈ Y , X1 and X2 are independent conditioned on Y = y. Moreover,

H(X1|Y = y) = h2(p1(y)) and H(X2|Y = y) = H(X2) = h2(p2) since X2 and Y are
independent. Therefore, part (a) implies that H(X1 ⊕X2|Y = y) = h2(p1(y) ∗ p2).

We conclude that

H(X1 ⊕X2|Y ) =
∑
y∈Y

H(X1 ⊕X2|Y = y)PY (y)

=
∑
y∈Y

h2(p1(y) ∗ p2)q(y) =
∑
y∈Y

h2(p2 ∗ p1(y))q(y).

(c) Note that p2 ∗ p = p(1 − p2) + p2(1 − p) = βp + p2, where β = 1 − 2p2 ≥ 0. Let

g(p) =
∂
∂p
h2(p2∗p)
∂
∂p
h2(p)

=
∂
∂p
h2(βp+p2)
∂
∂p
h2(p)

=
βh′2(βp+p2)

h′2(p)
. We have

g′(p) =
β2h′′2(βp+ p2)h

′
2(p)− βh′′2(p)h′2(βp+ p2)

h′2(p)
2

=
βh′′2(βp+ p2)h

′′
2(p)

h′2(p)
2

[
β
h′2(p)

h′′2(p)
− h′2(βp+ p2)

h′′2(βp+ p2)

]
.

Note that h′2(p) = log 1−p
p

and h′′2(p) = −1
p(1−p) ln 2

, which implies that h′′2(βp + p2) ≤ 0 and

h′′2(p) ≤ 0. Therefore,
βh′′2 (βp+p2)h

′′
2 (p)

h′2(p)
2 ≥ 0 and so it is sufficient to show that we have

β
h′2(p)

h′′2 (p)
− h′2(βp+p2)

h′′2 (βp+p2)
≥ 0. Now define α = 1− 2p. It is easy to check the following:

• p = 1
2
(1− α).

• 1− p = 1
2
(1 + α).

• βp+ p2 = 1
2
(1− αβ).

• 1− (βp+ p2) = 1
2
(1 + αβ).

Therefore, we have

β
h′2(p)

h′′2(p)
= −β(ln 2)p(1− p) log

1− p
p

= −β ln 2

4
(1− α2) log

1 + α

1− α
,

and

h′2(βp+ p2)

h′′2(βp+ p2)
= −(ln 2)(βp+p2)(1−βp−p2) log

1− βp− p2
βp+ p2

= − ln 2

4
(1−(αβ)2) log

1 + αβ

1− αβ
.

2



Using the formula log(1 + x) =
∑
k≥1

(−1)k−1
xk

k
, we get

log
1 + x

1− x
= log(1 + x)− log(1− x) =

(∑
k≥1

(−1)k−1
xk

k

)
−

(∑
k≥1

(−1)k−1
(−x)k

k

)

=
∑
k≥1

(
(−1)k−1 + 1

) xk
k

= 2
∑
k≥1

k is odd

xk

k
.

Therefore,

−(1− x2) log
1 + x

1− x
= −2

∑
k≥1

k is odd

xk

k
+ 2

∑
k≥1

k is odd

xk+2

k
= −2x− 2

∑
k≥3

k is odd

xk

k
+ 2

∑
k≥3

k is odd

xk

k − 2

= −2x+ 2
∑
k≥3

k is odd

(
1

k − 2
− 1

k

)
xk.

Hence,

β
h′2(p)

h′′2(p)
= −β ln 2

4
(1− α2) log

1 + α

1− α
=
β ln 2

4

−2α + 2
∑
k≥3

k is odd

(
1

k − 2
− 1

k

)
αk


= −αβ ln 2

2
+

ln 2

2

∑
k≥3

k is odd

(
1

k − 2
− 1

k

)
βαk,

and

h′2(βp+ p2)

h′′2(βp+ p2)
= − ln 2

4
(1− (αβ)2) log

1 + αβ

1− αβ
=

ln 2

4

−2αβ + 2
∑
k≥3

k is odd

(
1

k − 2
− 1

k

)
(αβ)k


= −αβ ln 2

2
+

ln 2

2

∑
k≥3

k is odd

(
1

k − 2
− 1

k

)
βkαk.

We conclude that

β
h′2(p)

h′′2(p)
− h′2(βp+ p2)

h′′2(βp+ p2)
=

ln 2

2

∑
k≥3

k is odd

(
1

k − 2
− 1

k

)
(β − βk)αk

(∗)
≥ 0,

where (∗) follows from the fact that β = 1−2p2 ≤ 1 which implies that βk ≤ β. Therefore,
g′(p) ≥ 0 and so g(p) is increasing. We conclude that the function f is convex.

(d) We have

H(X1 ⊕X2|Y ) =
∑
y∈Y

h2(p2 ∗ p1(y))q(y) =
∑
y∈Y

h2
(
p2 ∗ h−12

(
H(X1|Y = y)

))
q(y)

=
∑
y∈Y

f
(
H(X1|Y = y)

)
q(y)

(∗)
≥ f

(∑
y∈Y

H(X1|Y = y)q(y)
)

= f(H(X1|Y )) = h2
(
p2 ∗ h−12

(
H(X1|Y )

))
= h2(p2 ∗ p1) = h2(p1 ∗ p2),

where (∗) follows from the convexity of the function f .
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(e) For every y1 ∈ Y1, let 0 ≤ p1(y1) ≤ 1
2

be such that H(X1|Y1 = y1) = h2(p1(y1))
and let q1(y1) = PY1(y1). Similarly, for every y2 ∈ Y2, let 0 ≤ p2(y2) ≤ 1

2
be such that

H(X2|Y2 = y2) = h2(p2(y2)) and let q2(y2) = PY2(y2). For every y1 ∈ Y1, define the
mapping fy1 : [0, 1]→ R as fy1(h) = h2(p1(y) ∗ h−12 (h)). Part (c) implies that fy1 is convex
for every y1 ∈ Y1. We have

H(X1 ⊕X2|Y1, Y2) =
∑
y1∈Y1

∑
y2∈Y2

h2(p1(y1) ∗ p2(y2))PY1,Y2(y1, y2)

=
∑
y1∈Y1

∑
y2∈Y2

h2(p1(y1) ∗ p2(y2))q1(y1)q2(y2)

=
∑
y1∈Y1

q1(y1)
∑
y2∈Y2

h2
(
p1(y1) ∗ h−12

(
H(X2|Y2 = y2)

))
q2(y2)

=
∑
y1∈Y1

q1(y1)
∑
y2∈Y2

fy1
(
H(X2|Y2 = y2)

)
q2(y2)

(∗)
≥
∑
y1∈Y1

q1(y1)fy1

( ∑
y2∈Y2

H(X2|Y2 = y2)q2(y2)
)

=
∑
y1∈Y1

q1(y1)fy1(H(X2|Y2)) =
∑
y1∈Y1

q1(y1)h2
(
p1(y1) ∗ h−12

(
H(X2|Y2)

))
=
∑
y1∈Y1

q1(y1)h2(p1(y1) ∗ p2) =
∑
y1∈Y1

h2
(
p2 ∗ h−12

(
H(X1|Y1 = y1)

))
q1(y1)

=
∑
y1∈Y1

f
(
H(X1|Y1 = y1)

)
q1(y1)

(∗∗)
≥ f

( ∑
y1∈Y1

H(X1|Y1 = y1)q(y1)
)

= f(H(X1|Y1)) = h2
(
p2 ∗ h−12

(
H(X1|Y1)

))
= h2(p2 ∗ p1) = h2(p1 ∗ p2),

where (∗) follows from the convexity of the functions {fy1 : y1 ∈ Y1} and (∗∗) follows from
the convexity of f .

Problem 3.

(a) Any codeword of C is of the from 〈a, a ⊕ b〉 with a ∈ C1 and b ∈ C2. Given two
codewords 〈u′,u′⊕v′〉 and 〈u′′,u′′⊕v′′〉 of C, their sum is 〈u,u⊕v〉 with u = u′⊕u′′

and v = v′ ⊕ v′′. Since C1 and C2 are linear codes u ∈ C1 and v ∈ C2. Thus the sum
of any two codewords of C is a codeword of C and we conclude that C is linear.

(b) If (u,v) 6= (u′,v′), then either u 6= u′, or, u = u′ and v 6= v′. In either case
〈u|u⊕v〉 6= 〈u′|u′⊕v′〉: in the first case the first halves differ, in the second case the
second halves differ. Thus no two of the (u,v) pairs are mapped to the same element
of C, and the code has exactly M1M2 elements. Its rate is 1

2n
log(M1M2) = 1

2
R1+ 1

2
R2.

(c) As v = u⊕ u⊕ v,

wH(v) = wH(u⊕ u⊕ v) ≤ wH(u) + wH(u⊕ v)

by the triangle inequality. Noting that the right hand side is wH(〈u|u⊕v〉) completes
the proof.

(d) If v = 0 we have 〈u|u ⊕ v〉 = 〈u|u〉 which has twice the Hamming weight of u.
Otherwise (c) gives wH(〈u|u⊕ v〉) ≥ wH(v).
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(e) Since C is linear its minimum distance equals the minimum weight of its non-zero
codewords. If 〈u|u ⊕ v〉 is non-zero either v 6= 0, or, v = 0 and u 6= 0. By (d),
in the first case wH(〈u|u ⊕ v〉) ≥ wH(v) ≥ d1, in the second case wH(〈u|u ⊕ v〉) ≥
2wH(u) ≥ 2d2. Thus d ≥ min{2d1, d2}.

(f) Let u0 be the minimum weight non-zero codeword of C1 and let v0 be the minimum
weight non-zero codeword of C2. Note that 〈u0|u0〉 is a non-zero codeword of C
(corresponding to the choice u = u0, v = 0). It has weight 2d1. Similarly, 〈0|v0〉 is
also a non-zero codeword of C (corresponding to the choice u = 0, v = v0). It has
weight d2. Consequently d ≤ min{2d1, d2}. In light of (e) we find d = min{2d1, d2}.

This method of constructing a longer code from two shorter ones is known under several
names: ‘Plotkin construction’, ‘bar product’, ‘(u|u + v) construction’ appear regularly in
the literature. Compare this method to the ‘obvious’ method of letting the codewords to
be 〈u|v〉. The simple method has the same block-length and rate as we have here, but
its minimum distance is only min{d1, d2}. The factor two gained in d1 by the bar product
is significant, and many practical code families can be built from very simple base codes
by a recursive application of the bar product. Notable among them are the family of
Reed–Muller codes.

Problem 4.

(a) We have

Qi+1 =
√
Zi+1(1− Zi+1) =

{√
Z2
i (1− Z2

i ) w.p. 1/2√
(2Zi − Z2

i )(1− 2Zi + Z2
i ) w.p. 1/2

=

{√
Z2
i (1− Zi)(1 + Zi) w.p. 1/2√

(2− Zi)Zi(1− Zi)2 w.p. 1/2

=

{√
Zi(1− Zi)

√
Zi(1 + Zi) w.p. 1/2√

Zi(1− Zi)
√

(2− Zi)(1− Zi) w.p. 1/2

=
√
Zi(1− Zi)

{√
Zi(1 + Zi) w.p. 1/2√
(2− Zi)(1− Zi) w.p. 1/2

= Qi

{
f1(Zi) w.p. 1/2

f2(Zi) w.p. 1/2
,

where f1(z) =
√
z(z + 1) and f2(z) =

√
(2− z)(1− z).

(b) We have

f ′1(z) =
2z + 1

2
√
z(z + 1)

so

f ′′1 (z) =

4
√
z(z + 1)− (2z + 1)

2(2z + 1)

2
√
z(z + 1)(

2
√
z(z + 1)

)2
=

4z(z + 1)− (2z + 1)2

4
(
z(z + 1)

) 3
2

=
−1

4
(
z(z + 1)

) 3
2

≤ 0.
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Therefore, f1 is concave. By noticing that f2(z) = f1(1− z), we obtain:

f1(z) + f2(z) = f1(z) + f1(1− z) = 2

(
1

2
f1(z) +

1

2
f1(1− z)

)
(∗)
≤ 2f1

(
1

2
z +

1

2
(1− z)

)
= 2f1

(
1

2

)
= 2

√
1

2

(
1

2
+ 1

)
= 2

√
1

2
· 3

2
= 2

√
3

2
=
√

3,

where (∗) follows from the concavity of f1. We have

E
[
Qi+1

∣∣ Z0, . . . , Zi
]

=
1

2
f1(Zi)Qi +

1

2
f2(Zi)Qi =

1

2
(f1(Zi) + f2(Zi))Qi ≤ ρQi,

where ρ =
√
3
2
< 1.

(c) We will show the claim by induction on i ≥ 0. For i = 0, we have Z0 = z0 with
probability 1. Therefore, EQ0 =

√
z0(1− z0).

It is easy to that the function [0, 1] → R defined by z →
√
z(1− z) achieves its

maximum at z = 1
2
, and so EQ0 =

√
z0(1− z0) ≤

√
1

2

(
1− 1

2

)
=

1

2
. Therefore, the

claim is true for i = 0.

Now suppose that the claim is true for i ≥ 0, i.e., EQi ≤ 1
2
ρi. We have

EQi+1 = E
[
E
[
Qi+1

∣∣ Z0, . . . , Zi
]] (∗)
≤ E[ρQi] = ρE[Qi]

(∗∗)
≤ ρ · 1

2
ρi =

1

2
ρi+1,

where (∗) follows from Part (b) and (∗∗) follows from the induction hypothesis. We
conclude that EQi ≤ 1

2
ρi for every i ≥ 0.

(d) By noticing that δ < z < 1− δ if and only if z(1− z) > δ(1− δ), we get:

P
[
Zi ∈ (δ, 1− δ)

]
= P

[
Zi(1− Zi) > δ(1− δ)

]
= P

[√
Zi(1− Zi) >

√
δ(1− δ)

]
= P

[
Qi >

√
δ(1− δ)

] (∗)
≤ EQi√

δ(1− δ)

(∗∗)
≤ ρi

2
√
δ(1− δ)

,

where (∗) follows from the Markov inequality and (∗∗) follows from Part (c). Now

since ρ < 1, we have
ρi

2
√
δ(1− δ)

→ 0 as i→∞. We conclude that

P
[
Zi ∈ (δ, 1− δ)

]
→ 0 as i gets large.

Problem 5. As we should never represent a 0 with a 1, we are restricted to conditional
distributions with pV |U(1|0) = 0. Consequently, the possible pV |U are of the type

pV |U(0|0) = 1 pV |U(1|0) = 0, pV |U(0|1) = α pV |U(1|1) = 1− α,

and parametrized by α ∈ [0, 1]. For pV |U as above, we have Pr(V = 1) = 1
2
(1− α), and

E[d(U, V )] =
∑
u,v

pU(u)pV |U(v|u)d(u, v) = α/2,

I(U ;V ) = H(V )−H(V |U) = h2
(
1
2
(1− α)

)
− 1

2
h2(α) =: f(α).
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Thus R(D) = min
{
f(α) : 0 ≤ α ≤ min{1, 2D}

}
, with f(α) = h2

(
1
2
(1 − α)

)
− 1

2
h2(α).

It is not difficult to check that f is a decreasing function on the interval [0, 1], and thus
consequently

R(D) =

{
h2(

1
2
−D)− 1

2
h2(2D), 0 ≤ D < 1

2

0, D ≥ 1
2
.

Note that for D ≥ 1
2

we can represent any u with a constant, namely v = 0, with average
distortion 1/2.
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