

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16

Solutions to Midterm exam

Information Theory and Coding
Oct. 30, 2019

PROBLEM 1. (20 points)

In a cryptosystem, a secret key K known to both Alice and Bob allows for secure communication. Using the key K , Alice converts her plain text U to a ciphertext V . Using the same key K , Bob converts the ciphertext V back into U . We model U , V and K as random variables. Secure communication requires U and V to be independent.

(a) (2 pts) What are the values of $H(U|VK)$ and $I(U;V)$?

From the problem statement we know that Bob can determine U given V and K . This implies that $H(U|VK) = 0$.

From the problem statement we know that the secret key K allows secure communication, whereas secure communication is defined as U and V to be independent. This implies that $I(U;V) = 0$.

(b) (4 pts) Determine the relation,(i.e., $<$, \leq , $=$, $>$, or \geq), between $H(U)$ and $I(U;K|V)$. Provide a proof for this relation.

Consider the following expansion of $I(U;K|V)$

$$\begin{aligned} I(U;K|V) &= H(U|V) - H(U|KV) \\ &= H(U) \end{aligned}$$

where we used the fact that U and V are independent ($H(U|V) = H(U)$) and the result of (a) that $H(U|VK) = 0$.

(c) (4 pts) Determine the relation,(i.e., $<$, \leq , $=$, $>$, or \geq), between $H(K)$ and $I(U;K|V)$. Provide a proof for this relation.

Observe the following inequalities:

$$\begin{aligned} I(U;K|V) &= H(K|V) - H(K|UV) \\ &\leq H(K|V) \\ &\leq H(K) \end{aligned}$$

where the first inequality is due to $H(K|UV) \geq 0$ and the second inequality is due to the fact that conditioning reduces entropy.

(d) (4 pts) Show that $H(K) \geq H(U)$. Furthermore, show that if the equality holds, then (i) K and V are independent and (ii) $H(K|UV) = 0$.

From (b) and (c) we have $H(K) \geq I(U;K|V) = H(U)$. The equality holds if $H(K) = I(U;K|V)$. From the chain of inequalities in part (c), we can see that this implies that $H(K|V) = H(K)$ (such that K is independent of V) and $H(K|UV) = 0$.

Suppose further that (i) K is independent of U , (ii) the cryptosystem is implemented as $V = f(U, K)$ and $U = g(V, K)$, and (iii) the system is supposed to be secure regardless of the distribution of U on a given alphabet \mathcal{U} .

(e) (2 pts) Show that $H(K) \geq \log |\mathcal{U}|$.

From (d) we have $H(K) \geq H(U)$, and from the problem statement, this property must hold for any distribution of U . Take U to be distributed uniformly on \mathcal{U} such that $H(U) = \log |\mathcal{U}|$. This gives us $H(K) \geq H(U) = \log |\mathcal{U}|$.

(f) (4 pts) With $\mathcal{U} = \{0, 1, \dots, |\mathcal{U}| - 1\}$, show that if we take K to be uniform on \mathcal{U} , the secrecy requirement is satisfied by $f(u, k) = u + k \pmod{|\mathcal{U}|}$.

To fulfill the secrecy requirement, we need to show that U and V are independent. One way to do this is by showing that $P(V = v \mid U = u) = P(V = v)$ for all v and u . As we have $V = K + U \pmod{|\mathcal{U}|}$, then

$$\begin{aligned} P(V = v \mid U = u) &= P(K = u - v \pmod{|\mathcal{U}|} \mid U = u) \\ &= P(K = u - v \pmod{|\mathcal{U}|}) \\ &= \frac{1}{|\mathcal{U}|} \end{aligned}$$

where the second line is due to U and K are independent. From this equality, we can see that for any v , $P(V = v \mid U = u)$ does not depend on u . Therefore we can assert that $P(V = v \mid U = u) = P(V = v)$ for all u and v .

PROBLEM 2. (18 points)

Suppose U_1, U_2, \dots are i.i.d. random variables with finite alphabet and let p denote the distribution of each U_i . Suppose we do not know p , but we know that it is included in the set of K possible distributions, i.e., $p \in \mathcal{P} = \{p_k : k = 1, \dots, K\}$.

For any distribution q on \mathcal{U} , define $r(q) = \max_k D(p_k \| q)$.

(a) (4 pts) Show that for any q there exists a prefix-free code $C : \mathcal{U} \rightarrow \{0, 1\}^*$ such that

$$E [\text{length}(C(U))] - H(U) \leq r(q) + 1$$

whenever the distribution of random variable U is in \mathcal{P} .

For each $u \in \mathcal{U}$, we assign a code of length $l(u) = \lceil -\log_2 q(u) \rceil$. We can see that

$$\sum_{u \in \mathcal{U}} 2^{-\lceil -\log_2 q(u) \rceil} \leq \sum_{u \in \mathcal{U}} 2^{\log_2 q(u)} = \sum_{u \in \mathcal{U}} q(u) = 1.$$

and due to Kraft's inequality, there exists a prefix-free code with such code lengths.

Now, suppose each U_i has distribution p_k for some $k \in [K]$, then we have the following relations between the expected length of the code designed as above and the entropy of U_i s.

$$\begin{aligned} E [\text{length}(C(U))] - H(U) &= \sum_{u \in \mathcal{U}} p_k(u) l(u) - \sum_{u \in \mathcal{U}} -p_k(u) \log_2 p_k(u) \\ &\leq - \sum_{u \in \mathcal{U}} p_k(u) \log_2 q(u) + 1 + \sum_{u \in \mathcal{U}} p_k(u) \log_2 p_k(u) \\ &= \sum_{u \in \mathcal{U}} p_k(u) \log_2 \frac{p_k(u)}{q(u)} + 1 \\ &= D(p_k \| q) + 1 \\ &\leq \max_k D(p_k \| q) + 1 \\ &= r(q) + 1 \end{aligned}$$

where the second line is due to $\lceil x \rceil \leq x + 1$, and the fourth line is due to the definition of $D(p_k \| q)$. Since the last inequality obtained does not depend on k , it is valid no matter what distribution U_i s have.

(b) (4 pts) Show that $\min_q r(q) \leq \log K$. [Hint: try $q(u) = \frac{1}{K} \sum_k p_k(u)$.]

We use the q given in the hint to show the following inequality

$$\begin{aligned} \min_{q'} \max_k D(p_k \| q') &\leq \max_k D(p_k \| q) \\ &= \max_k \sum_{u \in \mathcal{U}} p_k(u) \log_2 \frac{p_k(u)}{\frac{1}{K} \sum_{u' \in \mathcal{U}} p_k(u')} \\ &= \max_k \sum_{u \in \mathcal{U}} p_k(u) \log_2 \frac{p_k(u)}{\sum_{u' \in \mathcal{U}} p_k(u')} + \sum_{u \in \mathcal{U}} p_k(u) \log_2 K \\ &\leq \max_k \sum_{u \in \mathcal{U}} p_k(u) \log_2 K \\ &= \log_2 K \end{aligned}$$

where the third line is due to the fact that $p_k(u) \leq \sum_{u' \in \mathcal{U}} p_k(u')$ and $\log_2(x) \leq 0$ for all $0 < x \leq 1$.

(c) (4 pts) Show that for fixed K there exists a sequence of prefix-free codes $C_n : \mathcal{U}^n \rightarrow \{0, 1\}^*$ such that

$$\lim_{n \rightarrow \infty} \frac{1}{n} E [\text{length}(C_n(\mathcal{U}^n))] = H(U)$$

whenever U_1, U_2, \dots are i.i.d. and have a distribution in \mathcal{P} . [Hint: use (b).]

Define $p_{k,n}(\mathcal{U}^n) = \prod_{i=1}^n p_k(U_i)$. We use the results of (a) on the random variables \mathcal{U}^n such that we have for every n there exists a prefix-free code C_n such that

$$E [\text{length}(C_n(\mathcal{U}^n))] - H(\mathcal{U}^n) \leq \min_q \max_k D(p_{k,n} || q) + 1.$$

Furthermore, from the result of (b) and the fact that U_i 's are i.i.d. we have

$$E [\text{length}(C_n(\mathcal{U}^n))] - nH(U) \leq \log_2 K + 1.$$

Dividing both sides by n gives us

$$\frac{1}{n} E [\text{length}(C_n(\mathcal{U}^n))] - H(U) \leq \frac{\log_2 K + 1}{n}. \quad (1)$$

We also know from the lectures that

$$0 \leq \frac{1}{n} E [\text{length}(C_n(\mathcal{U}^n))] - H(U). \quad (2)$$

Combining (1) and (2), and taking $n \rightarrow \infty$, we finally obtain

$$\lim_{n \rightarrow \infty} \frac{1}{n} E [\text{length}(C_n(\mathcal{U}^n))] - H(U) = 0.$$

(d) (2 pts) Let $Z = \sum_u \max_k p_k(u)$. Show that $\min_q r(q) \leq \log Z$. [Hint: try choosing $q(u)$ proportional to $\max_k p_k(u)$.]

We use the same argument as in (b) by just replacing q with the new hint ($q(u) = \max_k p_k(u)/Z$, $Z = \max_k p_k(u)$)

$$\begin{aligned} \min_{q'} \max_k D(p_k || q') &\leq \max_k D(p_k || q) \\ &= \max_k \sum_{u \in \mathcal{U}} p_k(u) \log_2 \frac{p_k(u)}{\max_j p_j(u)} + \sum_{u \in \mathcal{U}} p_k(u) \log_2 Z \\ &\leq \max_k \sum_{u \in \mathcal{U}} p_k(u) \log_2 Z \\ &= \log_2 Z \end{aligned}$$

where the inequality is due to the fact that for all u , $p_k(u) \leq \max_j p_j(u)$.

(e) (4 pts) Show that $Z \leq \min\{K, |\mathcal{U}|\}$.

We have two upper bounds on Z , (i)

$$\sum_{u \in \mathcal{U}} \max_k p_k(u) \leq \sum_{u \in \mathcal{U}} 1 = |\mathcal{U}|$$

and, (ii)

$$\sum_{u \in \mathcal{U}} \max_k p_k(u) \leq \sum_{u \in \mathcal{U}} \sum_k p_k(u) = \sum_k \sum_{u \in \mathcal{U}} p_k(u) = \sum_k 1 = K.$$

Combining these two upper bounds give us

$$Z \leq \min\{K, |\mathcal{U}|\}.$$

PROBLEM 3. (12 points)

Suppose p_1, p_2, \dots, p_K are probability distributions on the finite alphabet \mathcal{U} . Let H_1, \dots, H_K be the entropies of these distributions, and let $H = \max_k H_k$. Fix $\epsilon > 0$ and for each $n \geq 1$ consider the set

$$T(n, \epsilon) = \bigcup_k T(n, p_k, \epsilon)$$

where $T(n, p_k, \epsilon)$ is the set of ϵ -typical sequences of length n with respect to the distribution p_k , i.e., $T(n, p_k, \epsilon) = \{u^n \in \mathcal{U}^n : \forall_{u' \in \mathcal{U}} |\frac{1}{n} N_{u'}(u^n) - p_k(u')| < \epsilon p_k(u')\}$ where $N_{u'}(u^n)$ is the number of occurrences of u' in sequence u^n .

Suppose that U_1, U_2, \dots are i.i.d. with distribution p where p is one of p_1, \dots, p_K , i.e., $p \in \mathcal{P} = \{p_k : k = 1, \dots, K\}$.

(a) (4 pts) Show that $\lim_{n \rightarrow \infty} \Pr((U_1, \dots, U_n) \in T(n, \epsilon)) = 1$. (In particular for any $\delta > 0$, for n large enough $\Pr(U^n \in T(n, \epsilon)) > 1 - \delta$.)

We have for all k, n and ϵ , $P((U_1, \dots, U_n) \in T(n, p_k, \epsilon)) \leq P((U_1, \dots, U_n) \in T(n, \epsilon))$ as $T(n, \epsilon) \supseteq T(n, p_k, \epsilon)$. This implies that for any $\epsilon > 0$, with k and p such that $p_k = p$, we have

$$\begin{aligned} \lim_{n \rightarrow \infty} \Pr((U_1, \dots, U_n) \in T(n, p_k, \epsilon)) &\leq \lim_{n \rightarrow \infty} \Pr((U_1, \dots, U_n) \in T(n, \epsilon)) \\ 1 &\leq \lim_{n \rightarrow \infty} \Pr((U_1, \dots, U_n) \in T(n, \epsilon)). \end{aligned}$$

where the second line is due to the property of typical sets.

As we also have $\lim_{n \rightarrow \infty} \Pr((U_1, \dots, U_n) \in T(n, \epsilon)) \leq 1$, with these inequalities we prove the statement.

(b) (4 pts) Show that for large enough n , $\frac{1}{n} \log |T(n, \epsilon)| < (1 + \epsilon)H + \epsilon$.

For typical sets, we know that $|T(n, p_k, \epsilon)| \leq 2^{(1+\epsilon)H_k n} \leq 2^{(1+\epsilon)H n}$. Hence, we obtain the following upper bound.

$$|T(n, \epsilon)| = \left| \bigcup_k T(n, p_k, \epsilon) \right| \leq \sum_k |T(n, p_k, \epsilon)| \leq K 2^{(1+\epsilon)H n}.$$

By taking logarithm and dividing by n the above expression, we have

$$\frac{1}{n} \log |T(n, \epsilon)| \leq (1 + \epsilon)H + \frac{\log K}{n}.$$

This implies that for any $n \geq \log K/\epsilon$ we have

$$\frac{1}{n} \log |T(n, \epsilon)| \leq (1 + \epsilon)H + \epsilon.$$

(c) (4 pts) Fix $R > H$ and $\delta > 0$. Show that for n large enough there is a prefix-free code $c : \mathcal{U}^n \rightarrow \{0, 1\}^*$ such that

$$\Pr(\text{length}(c(U^n)) < nR) > 1 - \delta.$$

Let us use the construction of prefix-free code for typical set given in the lectures. First, take an injective function $f_{\epsilon, n} : T(n, \epsilon) \rightarrow \{0, 1\}^{\lceil n(1+\epsilon)H + n\epsilon \rceil}$, this function exists

for large enough n due to our result in (b). Now take another injective function $g_n : \mathcal{U}^n \rightarrow \{0, 1\}^{\lceil n \log |\mathcal{U}| \rceil}$. We define $c_{\epsilon, n}(x)$ as $0||f_{\epsilon, n}(x)$ if $x \in T(n, \epsilon)$ and $1||g_n$ otherwise, where $||$ is the concatenation operator.

We have that

$$\begin{aligned} \Pr(U^n \in T(n, \epsilon)) &= \Pr(\text{length}(c_{\epsilon, n}(U^n)) = \lceil n(1 + \epsilon)H + n\epsilon \rceil + 1) \\ &\leq \Pr(\text{length}(c_{\epsilon, n}(U^n)) \leq n(1 + \epsilon)H + n\epsilon + 2). \end{aligned}$$

From (a) we know that there exists an $n_a(\epsilon, \delta)$ such that $1 - \delta < \Pr(U^n \in T(n, \epsilon))$ for all $n \geq n_a(\epsilon, \delta)$. From (b) we require $n \geq \log K/\epsilon = n_b(K, \epsilon)$. To get the form required in the problem statement, we need that :

$$n((1 + \epsilon)H + \epsilon + 2/n) < nR$$

Since $1/n \leq \epsilon$ for $n \geq n_b(K, \epsilon)$, the following inequality will also work

$$n((1 + \epsilon)H + 3\epsilon) < nR.$$

The above inequality satisfied by choosing an appropriate ϵ (i.e., $0 \leq \epsilon < \frac{R-H}{H+3}$).

Therefore, for a code $c_{\epsilon, n}$ constructed as above and ϵ chosen small enough, we have

$$\begin{aligned} \Pr(\text{length}(c_{\epsilon^*, n}(U^n)) < nR) &\geq \Pr(\text{length}(c_{\epsilon, n}(U^n)) \leq n(1 + \epsilon)H + n\epsilon + 2) \\ &\geq \Pr(U^n \in T(n, \epsilon)) \\ &> 1 - \delta \end{aligned}$$

for all $n > \max\{n_a(\epsilon, \delta), n_b(K, \epsilon)\}$.

PROBLEM 4. (10 points)

Suppose C_p is a prefix-free binary code for non-negative integers $\{0, 1, 2, \dots\}$. Suppose C_i is an injective code for an alphabet \mathcal{U} .

(a) (4 pts) Show that C defined by $C(u) = C_p(l(u))C_i(u)$, with $l(u) = \text{length}(C_i(u))$ is a prefix-free code for \mathcal{U} .

We need to show that for any u there is no u' such that $C(u')$ is a prefix of $C(u)$. We can divide it into two cases;

- The set of u' such that $l(u) = l(u')$. In this case $\text{length}(C(u)) = \text{length}(C(u'))$, but $C(u) \neq C(u')$ due to the assumption that C_i is injective. This implies no such u' exists.
- The set of u' such that $l(u) \neq l(u')$. As we assume that C_p is prefix-free, it implies that $C(u')$ must always have a prefix that is not a prefix of $C(u)$. Therefore no such u' exists.

Observe that (i) the code C_a with $C_a(j) = 0^j 1$, (i.e., $C_a(0) = 1$, $C_a(1) = 01$, $C_a(2) = 001, \dots$) is prefix-free with $\text{length}(C_a(j)) = j + 1$, and (ii) the code C_b for non-negative integers with

$$C_b(0) = \lambda, \quad C_b(j) = \text{bin}(j-1), \quad j > 0$$

where $\text{bin}(j)$ denotes the binary expansion of the integer j , (i.e., $\text{bin}(0) = 0$, $\text{bin}(1) = 1$, $\text{bin}(2) = 10$, $\text{bin}(3) = 11, \dots$) is injective with $\text{length}(C_b(j)) = \lfloor \log_2(j+1) \rfloor$.

(b) (2 pts) Show that there exists a prefix-free code C' for non-negative integers with

$$\text{length}(C'(j)) = 2\lfloor \log_2(j+1) \rfloor + 1, \quad j \geq 0.$$

We take $C_p = C_a$ and $C_i = C_b$. Therefore, by result on (a), we have

$$\begin{aligned} \text{length}(C'(j)) &= l_b(j) + l_a(l_b(j)) \\ &= \lfloor \log_2(j+1) \rfloor + \lfloor \log_2(j+1) \rfloor + 1 \end{aligned}$$

where $l_b(j) = \text{length}(C_b(j))$ and $l_a(j) = \text{length}(C_a(j))$.

(c) (4 pts) Consider a sequence of functions

$$\begin{aligned} l_1(j) &= 2\lfloor \log_2(j+1) \rfloor + 1 \\ l_n(j) &= \lfloor \log_2(j+1) \rfloor + l_{n-1}(\lfloor \log_2(j+1) \rfloor), \quad n > 1. \end{aligned}$$

Show that for each $n > 0$ there exists a prefix-free code for non-negative integers C_n such that

$$\text{length}(C_n(j)) = l_n(j).$$

[Hint: use induction.]

We define the code recursively as

$$\begin{aligned} C_1(j) &= C_a(j)C_b(j) \\ C_n(j) &= C_{n-1}(j)C_b(j), \quad n > 1 \end{aligned}$$

The code C_1 is prefix-free and satisfies the length requirement due to (b). The code C_n is prefix-free due to (a) in which we take C_{n-1} as the prefix-free code and C_b as the injective code. It also satisfies the length requirement as

$$\begin{aligned} \text{length}(C_n(j)) &= l_a(j) + l_{n-1}(l_a(j)) \\ &= \lfloor \log_2(j+1) \rfloor + l_{n-1}(\lfloor \log_2(j+1) \rfloor). \end{aligned}$$