Problem 1. Consider a memoryless channel with transition probability matrix $P_{Y|X}(y|x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution Q over \mathcal{X}, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q' over \mathcal{X},

(a) \[I(Q') \leq \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right) \]

(b) \[C \leq \max_x \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right) \]

where C is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

Problem 2.

(a) Show that $I(U; V) \geq I(U; V | T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution $p(y|x)$, and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on \mathcal{X}.

For $k \in \{1, 2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(\cdot)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1, 2\}$, with \[\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda. \]

Define \[p_{W,X,Y}(w, x, y) = \begin{cases} \lambda p_1(x) p(y|x) & \text{if } w = 1 \\ (1 - \lambda) p_2(x) p(y|x) & \text{if } w = 2. \end{cases} \]

(b) Express $I(X; Y | W)$ in terms of I_1, I_2 and λ.

(c) Express $p(x)$ in terms of $p_1(x)$, $p_2(x)$ and λ.

(d) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y|X}$, the mutual information $I(X; Y)$ is a concave function of p_X.

Problem 3. Consider a random source \mathcal{S} of information, and let W be a random variable which represents the first L symbols U_1, \ldots, U_L of this source, i.e., $W = U_1^L$. We want to transmit the value of W using a memoryless stationary channel as follows:

- At time $t = 1$, we send $X_1 = f_1(W)$ through the channel.
• At time \(t = i + 1 \leq n \), we send \(X_{i+1} = f_i(W, Y^i) \) through the channel. \(Y_1, \ldots, Y_i \) are the output of the channel at times \(t = 1, \ldots, i \) respectively.

\(f_1, \ldots, f_n \) are \(n \) mappings that constitute the encoder. Clearly, this is a communication system with feedback as we are using the value of \(Y^i \) in the computation of \(X_{i+1} \).

In the previous problem, we gave an example which satisfies \(I(X^n; Y^n) > nC \) and \(I(W; Y^n) \leq nC \). Show that the inequality \(I(W; Y^n) \leq nC \) always holds by justifying each of the following equalities and inequalities:

\[
\begin{align*}
I(W; Y^n) &\overset{(a)}{=} \sum_{i=1}^n I(W; Y_i | Y^{i-1}) \overset{(b)}{\leq} \sum_{i=1}^n I(W, Y^{i-1}; Y_i) \overset{(c)}{\leq} \sum_{i=1}^n I(W, X_i, X^{i-1}, Y^{i-1}; Y_i) \\
&\overset{(d)}{=} \sum_{i=1}^n I(X_i, X^{i-1}, Y^{i-1}; Y_i) \overset{(f)}{\leq} \sum_{i=1}^n I(X_i; Y_i) \leq nC.
\end{align*}
\]

Since \(I(W; Y^n) \) represents the amount of information that is shared with the receiver, the inequality \(I(W; Y^n) \leq nC \) shows that feedback does not increase the capacity.

Problem 4. Suppose \(Z \) is uniformly distributed on \([-1, 1]\), and \(X \) is a random variable, independent of \(Z \), constrained to take values in \([-1, 1]\). What distribution for \(X \) maximizes the entropy of \(X + Z \)? What distribution of \(X \) maximizes the entropy of \(XZ \)?

Problem 5. Random variables \(X \) and \(Y \) are correlated Gaussian variables:

\[
\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2 \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, K = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix} \right).
\]

Find \(I(X; Y) \).

Problem 6. Suppose \(X \) and \(Y \) are independent geometric random variables. That is, \(p_X(k) = (1 - p)^{k-1}p \) and \(p_Y(k) = (1 - q)^{k-1}q \), \(\forall k \in \{1, 2, \ldots\} \).

(a) Find \(H(X, Y) \).

(b) Find \(H(2X + Y, X - 2Y) \)

Now consider two independent exponential random variables \(X \) and \(Y \). That is, \(p_X(t) = \lambda_X e^{-\lambda_X t} \) and \(p_Y(t) = \lambda_Y e^{-\lambda_Y t} \), \(\forall t \in [0, \infty) \).

(c) Find \(h(X, Y) \).

(d) Find \(h(2X + Y, X - 2Y) \)