Problem 1. Suppose \(L : \mathbb{R}^K \to \mathbb{R}^N \) is a linear function and \(g : \mathbb{R}^N \to \mathbb{R} \) is a concave function. Show that \(f : \mathbb{R}^K \to \mathbb{R} \) defined as \(f(x) = g(L(x)) \) is concave.

Problem 2. From the notes on Lempel-Ziv algorithm, we know that the total length \(n \) of \(c \) distinct binary strings satisfies
\[
 n > c \log_2(c/8)
\]
where \(c \) is the maximum possible number of distinct parsings. The same technique, when applied to the non-binary strings yields
\[
 n > c \log_K(c/K^3)
\]
where \(K \) is the size of the alphabet the letters of the string belong to. This inequality lower bounds \(n \) in terms of \(c \). We will now show that \(n \) can also be upper bounded in terms of \(c \).

(a) Show that, if \(n \geq \frac{1}{2}m(m - 1) \), then \(c \geq m \).

(b) Find a sequence for which the bound in (a) is met with equality.

(c) Show now that \(n < \frac{1}{2}c(c + 1) \).

Problem 3. Let the alphabet be \(\mathcal{X} = \{a, b\} \). Consider the infinite sequence \(X_1^\infty = abababababababab\ldots \)

(a) What is the compressibility of \(\rho(X_1^\infty) \) using finite-state machines (FSM) as defined in class? Justify your answer.

(b) Design a specific FSM, call it \(M \), with at most 4 states and as low a \(\rho_M(X_1^\infty) \) as possible. What compressibility do you get?

(c) Using only the result in point (a) but no specific calculations, what is the compressibility of \(X_1^\infty \) under the Lempel–Ziv algorithm, i.e., what is \(\rho_{LZ}(X_1^\infty) \)?

(d) Re-derive your result from point (c) but this time by means of an explicit computation.

Problem 4. We are given a memoryless stationary binary symmetric channel \(\text{BSC}(\epsilon) \). Namely, if \(X_1, \ldots, X_n \in \{0, 1\} \) are the input of this channel and \(Y_1, \ldots, Y_n \in \{0, 1\} \) are the output, we have:
\[
P(Y_i|X_i, X_{i-1}, Y_{i-1}) = P(Y_i|X_i) = \begin{cases} 1 - \epsilon & \text{if } Y_i = X_i, \\ \epsilon & \text{otherwise.} \end{cases}
\]

Let \(W \) be a random variable that is uniform in \(\{0, 1\} \) and consider a communication system with feedback which transmits the value of \(W \) to the receiver as follows:

- At time \(t = 1 \), the transmitter sends \(X_1 = W \) through the channel.
At time \(t = i + 1 \leq n \), the transmitter gets the value of \(Y_i \) from the feedback and sends \(X_{i+1} = Y_i \) through the channel.

(a) Give the capacity \(C \) of the channel in terms of \(\epsilon \), and show that \(C = 0 \) when \(\epsilon = \frac{1}{2} \).

(b) Show that if \(\epsilon = \frac{1}{2} \), \(I(X^n; Y^n) = n - 1 \). This means that \(I(X^n; Y^n) \leq nC \) does not hold for this system.

(c) Show that although \(I(X^n; Y^n) > nC \) when \(\epsilon = \frac{1}{2} \), we still have \(I(W; Y^n) \leq nC \).

Note that since \(W \) is the useful information that is being transmitted, it is the value of \(I(W; Y^n) \) that we are interested in when we want to compute the amount of information that is shared with the receiver.

Problem 5. Consider the following variation on the Lempel-Ziv algorithm to encode an infinite sequence \(u_1 u_2 \ldots \) from an alphabet \(U \).

1. Set the dictionary \(D = U \). Denote the dictionary entries as \(d(0), \ldots, d(s-1) \), with \(s = |U| \) being the size of the dictionary. Set \(i = 0 \) (the number of input letters read so far).

2. Find the largest \(l \) such that \(w = u_{i+1} \ldots u_{i+l} \) is in \(D \).

3. With \(0 \leq j < s \) denoting the index of \(w \) in \(D \), output the \(\lceil \log_2 s \rceil \) bit binary representation of \(j \).

4. Add the word \(w u_{i+l+1} \) to \(D \), i.e., set \(d(s) = w u_{i+l+1} \), and increment \(s \) by 1. Increment \(i \) by \(l \). Goto step 2.

For example, with \(U = \{a, b\} \), the input string \(a b b b a a b \ldots \) will lead to the execution steps

<table>
<thead>
<tr>
<th>(D) at 2</th>
<th>(w)</th>
<th>output at 3</th>
<th>added-word at 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>a</td>
<td>0</td>
<td>ab</td>
</tr>
<tr>
<td>a b ab</td>
<td>b</td>
<td>01</td>
<td>bb</td>
</tr>
<tr>
<td>a b ab bb</td>
<td>bb</td>
<td>11</td>
<td>bbb</td>
</tr>
<tr>
<td>a b ab bb bbb</td>
<td>b</td>
<td>001</td>
<td>ba</td>
</tr>
<tr>
<td>a b ab bb bbb ba</td>
<td>a</td>
<td>000</td>
<td>aa</td>
</tr>
<tr>
<td>a b ab bb bbb ba aa</td>
<td>aa</td>
<td>110</td>
<td>aab</td>
</tr>
</tbody>
</table>

(a) (5 pts) Can the decoder reconstruct the input sequence \(u_1 u_2 \ldots \) from the output of the algorithm? If so, how? (The crucial difficulty is that the description of \(w \) in step 3 does not determine the word added to the dictionary in step 4.)

(b) (5 pts) The algorithm parses the sequence \(u_1 u_2 \ldots \) into a sequence of words \(w_1 w_2 \ldots \), (the \(w \)’s found in step 2). Show that a word \(w \) can appear at most \(|U| \) times in the parsing.

(c) (5 pts) Suppose \(u^n = u_1 \ldots u_n \) is parsed into \(m(u^n) \) words \(w_1 \ldots w_m \) by the algorithm. Show that for any \(k \geq 1 \)

\[n \geq k[m(u^n) - F(k)], \]

where \(F(k) = |U| \sum_{i=1}^{k-1} |U|^i \).

(d) (5 pts) Show that \(\lim_{n \to \infty} m(u^n)/n = 0 \).
(e) (5 pts) Show that after reading u^n the algorithm outputs fewer than $m(u^n)[\log_2|\mathcal{U}| + m(u^n)]$ bits.

Let $L(m, k)$ denote the minimum possible total length of a collection of m binary strings where no string appears more than k times.

(f) (5 pts) Show that if u^n is fed to an information lossless finite state machine with s states, then the machine outputs at least $L(m(u^n), s^2|\mathcal{U}|)$ bits.