
Exercise 8 (Graded homework 4): 20th of May 2019
CS-526 Learning Theory

The deadline is Tuesday, May 28, 2019. Please hand in your homework during the lecture
(May 27) or the exercise session (May 28). No scan of handwritten homework is
accepted.

Note: The tensor product is denoted by ⊗. In other words, for vectors a, b, c we have that
a⊗ b is the square array aαbβ where the superscript denotes the components, and a⊗ b⊗ c
is the cubic array aαbβcγ. We often denote components by superscripts because we need the
lower index to label vectors themselves.

Problem 1: Moments of GMM

Consider the mixture of Gaussians model:

p(x) =
K∑
i=1

wi
1

(2πσ2)
D
2

exp

(
− ‖x− ai‖

2

2σ2

)
where x, ai ∈ RD are column vectors and the weights wi ∈ (0, 1] satisfy

∑K
i=1wi = 1. Here

we look at the special case where all the covariance matrices are equal to σ2ID×D.

1) For j ∈ [D], ej is the jth canonical basis vector of RD. Prove the following identities
for the mean vector, the second moment matrix and the third moment tensor:

E[x] =
K∑
i=1

wi ai ;

E[xxT ] = σ2ID×D +
K∑
i=1

wi aia
T
i ;

E[x⊗ x⊗ x] =
K∑
i=1

wi ai ⊗ ai ⊗ ai + σ2

D∑
j=1

K∑
i=1

wi(ai ⊗ ej ⊗ ej + ej ⊗ ej ⊗ ai + ej ⊗ ai ⊗ ej) .

2) Let R a K ×K orthogonal (rotation) matrix. Define the matrix R̃ whose entries are

R̃ij = 1√
wi
Rij
√
wj, as well as the transformed vectors

a′i =
K∑
j=1

R̃ijaj .

Show that the mixture of Gaussians

p(x) =
K∑
i=1

wi
1

(2πσ2)
D
2

exp

(
− ‖x− a

′
i‖2

2σ2

)
has the same second moment matrix as the previous one.
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Problem 2: Examples of tensors and their rank

We recall that the rank of a tensor is the minimum possible number of terms in a decompo-
sition of a tensor as a sum of rank-one tensors. Let eT0 = (1, 0) and eT1 = (0, 1). Consider
the following second-order tensors (also called mode-2 or 2-way tensors):

B = e0 ⊗ e0 + e1 ⊗ e1

P = e0 ⊗ e0 + e1 ⊗ e1 + e0 ⊗ e1 + e1 ⊗ e0

E = e0 ⊗ e0 + e1 ⊗ e1 + e0 ⊗ e1

as well as the third-order tensors (mode-3 or 3-way):

G = e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1

W = e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0 .

1) Draw the two and three-dimensional multiarrays for all these tensors. Give the matri-
cizations of G and W along the three modes, i.e., give the matrices G(n) and W(n) for
the three modes n = 1, 2, 3.1

2) Determine the rank of each tensor (and justify your result).

3) Let O be an orthogonal 2× 2 matrix. Show that B = (Oe0)⊗ (Oe0) + (Oe1)⊗ (Oe1).
Does Jennrich’s theorem allow to conclude that a similar result is possible or is not
possible for G? And what about W?

4) Let ε > 0 and

Dε =
1

ε
(e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− 1

ε
e0 ⊗ e0 ⊗ e0

Check that limε→0Dε = W . In other words, the rank-3 tensor W can be obtained as a
limit of a sum of two rank-one tensors: W is on the “boundary” of the space of rank-2
tensors.

Problem 3: Frobenius norm minimizations: matrix versus tensors.

The Frobenius norm ‖ · ‖F of a tensor is defined as the Euclidean norm of the multi-array:

‖T‖2
F =

∑
α,β,γ

|Tαβγ|2 .

We recall the following important theorem for matrices.

Theorem 1 (Eckart-Young-Mirsky theorem). Let A ∈ CM×N be a rank-R matrix whose
singular value decomposition is given by UΣV ∗ where U ∈ CM×M , V ∈ CN×N are both
unitary matrices and Σ ∈ RM×N is a diagonal matrix with real nonnegative diagonal entries.
Without loss of generality we assume that the singular values are arranged in decreasing
order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σmin{M,N} (where σi = Σii). Then, the best rank-k (k ≤ R)

1See section 3.2 in Review of Rabanser, Shchur, Gunnemann on the course webpage.
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approximation of A is given by the truncated SVD Â = UΣ̃V ∗ with Σ̃ the diagonal matrix
whose diagonal entries are Σ̃ii = σi if 1 ≤ i ≤ k, Σ̃ii = 0 otherwise. More precisely:

‖A− Â‖F = min
S:rank(S)≤k

‖A− S‖F .

1) Do you think the analogous problem for tensors is well posed? In other words, given a

tensor T of order p ≥ 3 and rank R, can we always find a order-p tensor T̂ whose rank is
strictly smaller than R and that achieves the minimum of ‖T − S‖F over all the order-p
tensors S of rank k < R?

2) Now we wish to come back to the interesting phenomenon observed in question 4) of
Problem 2 where an order-3 rank-3 tensor could be obtained as the limit of a sequence of
rank-2 tensors. Use the Eckart-Young theorem to show that a rank R+ 1 matrix cannot be
obtained as a limit of a sum of R rank-one matrices. Can we obtain a rank-(R − 1) matrix
as the limit of a sequence of rank-R matrices? And what about tensors?

3) Independent question on the Frobenius norm. Recall that the multilinear transformation
of a tensor is the new tensor T (R1, R2, R3) with components

T (R1, R2, R3)αβγ =
∑
δ,ε,ζ

Rαδ
1 R

βε
2 R

γζ
3 T

δεζ .

Check that if R1, R2, R3 are rotation (orthogonal) matrices then the Frobenius norm is
invariant, i.e., ‖T‖F = ‖T (R1, R2, R3)‖F . You can limit your proof to real-valued tensors if
you wish.

Problem 4: Kronecker and Khatri-Rao products

The Kronecker product ⊗Kro of two vectors a ∈ RI1 and b ∈ RI2 is a vectorization of the
tensor (or outer) product. This amounts to take the I1× I2 array aαbβ = (a⊗ b)αβ and view
it as an I1I2 vector. More precisely we define the Kronecker product as the I1I2 column
vector:

a⊗Kro b = (a1bT , · · · , aI1bT )T .

Let A = [a1, · · · , aR] and B = [b1, · · · , bR] matrices of dimensions I1×R and I2×R. We
define the Khatri-Rao product as the new I1I2 ×R matrix

A�KhR B = [a1 ⊗Kro b1, · · · , aR ⊗Kro bR] .

1) Assume that both A and B are full column rank. Prove that the Khatri-Rao product
A�KhR B is also full column rank.

2) Explain in detail in which step of Jennrich’s algorithm2 this fact is used.

2See section 4.1.1 in Review of Rabanser, Shchur, Gunnemann on the course webpage.
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Problem 5: Jennrich’s type algorithm for order 4 tensors

Consider an order four tensor

T =
R∑
r=1

ar ⊗ br ⊗ cr ⊗ dr

where A = [a1, · · · , aR] ∈ RI1×R, B = [b1, · · · , bR] ∈ RI2×R, C = [c1, · · · , cR] ∈ RI3×R and
D = [d1, · · · , dR] ∈ RI4×R are full column rank.

1) Check that you can apply Jennrich’s algorithm to a “flattened” version of T , namely
the order three tensor

T̃ =
R∑
r=1

ar ⊗ br ⊗ (cr ⊗Kro dr) .

where Kro is the Kronecker product defined in the previous question.

2) Deduce that the rank R and A, B, C, D can be uniquely determined from the four-
dimensional array of numbers Tαβγδ (up to permutations and scalings).

Problem 6: The Moore-Penrose pseudoinverse

Consider a M × N matrix A ∈ CN×M . Its transpose and complex conjugate (also called
Hermitian conjugate) is the N ×M matrix ĀT that we denote A∗. Let A† ∈ CN×M satisfy
the following four conditions:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A .

A theorem of Moore and Penrose states that such a matrix always exists and is unique. This
matrix is called the Moore-Penrose pseudoinverse. Answer the following questions:

1) Let Σ ∈ CM×N be a diagonal matrix, that is, ∀i 6= j : Σij = 0 (but you don’t necessarily
have M = N). Show that Σ† is the N ×M diagonal matrix with diagonal entries

∀i ∈ {1, 2, . . . ,min{M,N}} : (Σ†)ii =

{
1/Σii if Σii 6= 0 ;

0 otherwise.

2) Let A = UΣV ∗ be the singular value decomposition (SVD) of A, that is, both U ∈
CM×M and V ∈ CN×N are unitary matrices and Σ ∈ RM×N is a diagonal matrix with
real nonnegative diagonal entries (the singular values). Give for A† an expression that
only involves U , V (or their inverse U∗, V ∗) and Σ†.

3) Show that if A has full column rank then A† = (A∗A)−1A∗ and A†A = IN×N .

4) Show that if A has full row rank then A† = A∗(AA∗)−1 and AA† = IM×M .

5) Show that if A is a square matrix with full rank then A† = A−1 is the usual inverse.

6) Let A have full column rank and B have full row rank. Check that (AB)† = B†A†.
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