The deadline is Tuesday, May 28, 2019. Please hand in your homework during the lecture (May 27) or the exercise session (May 28). No scan of handwritten homework is accepted.

Note: The tensor product is denoted by \otimes . In other words, for vectors $\underline{a}, \underline{b}, \underline{c}$ we have that $\underline{a} \otimes \underline{b}$ is the square array $a^{\alpha}b^{\beta}$ where the superscript denotes the components, and $\underline{a} \otimes \underline{b} \otimes c$ is the cubic array $a^{\alpha}b^{\beta}c^{\gamma}$. We often denote components by superscripts because we need the lower index to label vectors themselves.

Problem 1: Moments of GMM

Consider the mixture of Gaussians model:

$$p(\underline{x}) = \sum_{i=1}^{K} w_i \frac{1}{(2\pi\sigma^2)^{\frac{D}{2}}} \exp\left(-\frac{\|\underline{x}-\underline{a}_i\|^2}{2\sigma^2}\right)$$

where $\underline{x}, \underline{a}_i \in \mathbb{R}^D$ are column vectors and the weights $w_i \in (0, 1]$ satisfy $\sum_{i=1}^{K} w_i = 1$. Here we look at the special case where all the covariance matrices are equal to $\sigma^2 I_{D \times D}$.

1) For $j \in [D]$, \underline{e}_j is the j^{th} canonical basis vector of \mathbb{R}^D . Prove the following identities for the mean vector, the second moment matrix and the third moment tensor:

$$\mathbb{E}[\underline{x}] = \sum_{i=1}^{K} w_i \, \underline{a}_i \quad ;$$

$$\mathbb{E}[\underline{x} \, \underline{x}^T] = \sigma^2 I_{D \times D} + \sum_{i=1}^{K} w_i \, \underline{a}_i \underline{a}_i^T \quad ;$$

$$\mathbb{E}[\underline{x} \otimes \underline{x} \otimes \underline{x}] = \sum_{i=1}^{K} w_i \, \underline{a}_i \otimes \underline{a}_i \otimes \underline{a}_i + \sigma^2 \sum_{j=1}^{D} \sum_{i=1}^{K} w_i (\underline{a}_i \otimes \underline{e}_j \otimes \underline{e}_j + \underline{e}_j \otimes \underline{e}_j \otimes \underline{a}_i + \underline{e}_j \otimes \underline{a}_i \otimes \underline{e}_j) \, .$$

2) Let $R \neq K \times K$ orthogonal (rotation) matrix. Define the matrix \widetilde{R} whose entries are $\widetilde{R}_{ij} = \frac{1}{\sqrt{w_i}} R_{ij} \sqrt{w_j}$, as well as the transformed vectors

$$\underline{a}_i' = \sum_{j=1}^K \widetilde{R}_{ij} \underline{a}_j$$

Show that the mixture of Gaussians

$$p(\underline{x}) = \sum_{i=1}^{K} w_i \frac{1}{(2\pi\sigma^2)^{\frac{D}{2}}} \exp\left(-\frac{\|\underline{x} - \underline{a}'_i\|^2}{2\sigma^2}\right)$$

has the same second moment matrix as the previous one.

Problem 2: Examples of tensors and their rank

We recall that the rank of a tensor is the minimum possible number of terms in a decomposition of a tensor as a sum of rank-one tensors. Let $e_0^T = (1,0)$ and $e_1^T = (0,1)$. Consider the following second-order tensors (also called mode-2 or 2-way tensors):

$$B = e_0 \otimes e_0 + e_1 \otimes e_1$$

$$P = e_0 \otimes e_0 + e_1 \otimes e_1 + e_0 \otimes e_1 + e_1 \otimes e_0$$

$$E = e_0 \otimes e_0 + e_1 \otimes e_1 + e_0 \otimes e_1$$

as well as the third-order tensors (mode-3 or 3-way):

$$G = e_0 \otimes e_0 \otimes e_0 + e_1 \otimes e_1 \otimes e_1$$
$$W = e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_0 .$$

- 1) Draw the two and three-dimensional multiarrays for all these tensors. Give the matricizations of G and W along the three modes, i.e., give the matrices $G_{(n)}$ and $W_{(n)}$ for the three modes n = 1, 2, 3.¹
- 2) Determine the rank of each tensor (and justify your result).
- **3**) Let *O* be an orthogonal 2×2 matrix. Show that $B = (Oe_0) \otimes (Oe_0) + (Oe_1) \otimes (Oe_1)$. Does Jennrich's theorem allow to conclude that a similar result is possible or is not possible for *G*? And what about *W*?
- 4) Let $\epsilon > 0$ and

$$D_{\epsilon} = \frac{1}{\epsilon} (e_0 + \epsilon e_1) \otimes (e_0 + \epsilon e_1) \otimes (e_0 + \epsilon e_1) - \frac{1}{\epsilon} e_0 \otimes e_0 \otimes e_0$$

Check that $\lim_{\epsilon \to 0} D_{\epsilon} = W$. In other words, the rank-3 tensor W can be obtained as a limit of a sum of two rank-one tensors: W is on the "boundary" of the space of rank-2 tensors.

Problem 3: Frobenius norm minimizations: matrix versus tensors.

The Frobenius norm $\|\cdot\|_F$ of a tensor is defined as the Euclidean norm of the multi-array:

$$||T||_F^2 = \sum_{\alpha,\beta,\gamma} |T^{\alpha\beta\gamma}|^2$$

We recall the following important theorem for matrices.

Theorem 1 (Eckart-Young-Mirsky theorem). Let $A \in \mathbb{C}^{M \times N}$ be a rank-R matrix whose singular value decomposition is given by $U\Sigma V^*$ where $U \in \mathbb{C}^{M \times M}$, $V \in \mathbb{C}^{N \times N}$ are both unitary matrices and $\Sigma \in \mathbb{R}^{M \times N}$ is a diagonal matrix with real nonnegative diagonal entries. Without loss of generality we assume that the singular values are arranged in decreasing order, i.e., $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{M,N\}}$ (where $\sigma_i = \Sigma_{ii}$). Then, the best rank-k ($k \leq R$)

¹See section 3.2 in Review of Rabanser, Shchur, Gunnemann on the course webpage.

approximation of A is given by the truncated SVD $\hat{A} = U \widetilde{\Sigma} V^*$ with $\widetilde{\Sigma}$ the diagonal matrix whose diagonal entries are $\widetilde{\Sigma}_{ii} = \sigma_i$ if $1 \leq i \leq k$, $\widetilde{\Sigma}_{ii} = 0$ otherwise. More precisely:

$$||A - \hat{A}||_F = \min_{S: \operatorname{rank}(S) \le k} ||A - S||_F.$$

1) Do you think the analogous problem for tensors is well posed? In other words, given a tensor T of order $p \ge 3$ and rank R, can we always find a order-p tensor \widehat{T} whose rank is strictly smaller than R and that achieves the minimum of $||T - S||_F$ over all the order-p tensors S of rank k < R?

2) Now we wish to come back to the interesting phenomenon observed in question 4) of Problem 2 where an order-3 rank-3 tensor could be obtained as the limit of a sequence of rank-2 tensors. Use the Eckart-Young theorem to show that a rank R + 1 matrix cannot be obtained as a limit of a sum of R rank-one matrices. Can we obtain a rank-(R - 1) matrix as the limit of a sequence of rank-R matrices? And what about tensors?

3) Independent question on the Frobenius norm. Recall that the multilinear transformation of a tensor is the new tensor $T(R_1, R_2, R_3)$ with components

$$T(R_1, R_2, R_3)^{\alpha\beta\gamma} = \sum_{\delta, \epsilon, \zeta} R_1^{\alpha\delta} R_2^{\beta\epsilon} R_3^{\gamma\zeta} T^{\delta\epsilon\zeta} .$$

Check that if R_1, R_2, R_3 are rotation (orthogonal) matrices then the Frobenius norm is invariant, i.e., $||T||_F = ||T(R_1, R_2, R_3)||_F$. You can limit your proof to real-valued tensors if you wish.

Problem 4: Kronecker and Khatri-Rao products

The Kronecker product \otimes_{Kro} of two vectors $\underline{a} \in \mathbb{R}^{I_1}$ and $\underline{b} \in \mathbb{R}^{I_2}$ is a vectorization of the tensor (or outer) product. This amounts to take the $I_1 \times I_2$ array $a^{\alpha}b^{\beta} = (\underline{a} \otimes \underline{b})^{\alpha\beta}$ and view it as an I_1I_2 vector. More precisely we define the Kronecker product as the I_1I_2 column vector:

$$\underline{a} \otimes_{Kro} \underline{b} = (a^1 \underline{b}^T, \cdots, a^{I_1} \underline{b}^T)^T.$$

Let $A = [\underline{a}_1, \dots, \underline{a}_R]$ and $B = [\underline{b}_1, \dots, \underline{b}_R]$ matrices of dimensions $I_1 \times R$ and $I_2 \times R$. We define the *Khatri-Rao* product as the new $I_1 I_2 \times R$ matrix

$$A \odot_{KhR} B = [\underline{a}_1 \otimes_{Kro} \underline{b}_1, \cdots, \underline{a}_R \otimes_{Kro} \underline{b}_R].$$

- 1) Assume that both A and B are full column rank. Prove that the Khatri-Rao product $A \odot_{KhR} B$ is also full column rank.
- 2) Explain in detail in which step of Jennrich's algorithm² this fact is used.

²See section 4.1.1 in Review of Rabanser, Shchur, Gunnemann on the course webpage.

Problem 5: Jennrich's type algorithm for order 4 tensors

Consider an order four tensor

$$T = \sum_{r=1}^{R} \underline{a}_r \otimes \underline{b}_r \otimes \underline{c}_r \otimes \underline{d}_r$$

where $A = [\underline{a}_1, \cdots, \underline{a}_R] \in \mathbb{R}^{I_1 \times R}$, $B = [\underline{b}_1, \cdots, \underline{b}_R] \in \mathbb{R}^{I_2 \times R}$, $C = [\underline{c}_1, \cdots, \underline{c}_R] \in \mathbb{R}^{I_3 \times R}$ and $D = [\underline{d}_1, \cdots, \underline{d}_R] \in \mathbb{R}^{I_4 \times R}$ are full column rank.

1) Check that you can apply Jennrich's algorithm to a "flattened" version of T, namely the order three tensor

$$\widetilde{T} = \sum_{r=1}^{K} \underline{a}_r \otimes \underline{b}_r \otimes (\underline{c}_r \otimes_{Kro} \underline{d}_r) .$$

where Kro is the Kronecker product defined in the previous question.

2) Deduce that the rank R and A, B, C, D can be uniquely determined from the fourdimensional array of numbers $T^{\alpha\beta\gamma\delta}$ (up to permutations and scalings).

Problem 6: The Moore-Penrose pseudoinverse

Consider a $M \times N$ matrix $A \in \mathbb{C}^{N \times M}$. Its transpose and complex conjugate (also called Hermitian conjugate) is the $N \times M$ matrix \bar{A}^T that we denote A^* . Let $A^{\dagger} \in \mathbb{C}^{N \times M}$ satisfy the following four conditions:

$$AA^{\dagger}A = A, \quad A^{\dagger}AA^{\dagger} = A^{\dagger}, \quad (AA^{\dagger})^* = AA^{\dagger}, \quad (A^{\dagger}A)^* = A^{\dagger}A.$$

A theorem of Moore and Penrose states that such a matrix always exists and is unique. This matrix is called the Moore-Penrose pseudoinverse. Answer the following questions:

1) Let $\Sigma \in \mathbb{C}^{M \times N}$ be a diagonal matrix, that is, $\forall i \neq j : \Sigma_{ij} = 0$ (but you don't necessarily have M = N). Show that Σ^{\dagger} is the $N \times M$ diagonal matrix with diagonal entries

$$\forall i \in \{1, 2, \dots, \min\{M, N\}\} : (\Sigma^{\dagger})_{ii} = \begin{cases} 1/\Sigma_{ii} & \text{if } \Sigma_{ii} \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

- 2) Let $A = U\Sigma V^*$ be the singular value decomposition (SVD) of A, that is, both $U \in \mathbb{C}^{M \times M}$ and $V \in \mathbb{C}^{N \times N}$ are unitary matrices and $\Sigma \in \mathbb{R}^{M \times N}$ is a diagonal matrix with real nonnegative diagonal entries (the singular values). Give for A^{\dagger} an expression that only involves U, V (or their inverse U^*, V^*) and Σ^{\dagger} .
- **3**) Show that if A has full column rank then $A^{\dagger} = (A^*A)^{-1}A^*$ and $A^{\dagger}A = I_{N \times N}$.
- 4) Show that if A has full row rank then $A^{\dagger} = A^* (AA^*)^{-1}$ and $AA^{\dagger} = I_{M \times M}$.
- 5) Show that if A is a square matrix with full rank then $A^{\dagger} = A^{-1}$ is the usual inverse.
- 6) Let A have full column rank and B have full row rank. Check that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.