
Exercise 7 (Graded homework 3): 7th of May 2019
CS-526 Learning Theory

The deadline is Tuesday, May 21, 2019. Please hand in your homework during the lecture
(May 20) or the exercise session (May 21). No scan of handwritten homework is
accepted.

Problem 1: MCMC, Gibbs sampling, and application to the Ising model

Let p(x), x = (x1, · · · , xK) ∈ AK , for a discrete alphabet A, be the probability distribution
(of some graphical model say) from which we want to sample. In class we discussed the
general Metropolis-Hastings prescription: (i) Choose a base or proposal chain with transition
probability q̃(x′ | x); (ii) If at time t the state of the Markov chain is xt propose the move
xt → xt+1 where xt+1 ∼ q̃(· | xt); (iii) Accept the new state with probability

A(xt+1, xt) = min

(
1,
q̃(xt | xt+1)p(xt+1)

q̃(xt+1 | xt)p(xt)

)
.

Let q(xt+1 | xt) the transition probability of this chain.

1) Show that the detailed balance condition is satisfied, i.e.,

q(xt+1 | xt)p(xt) = q(xt | xt+1)p(xt+1)

and that therefore p(x) is a stationary distribution.

2) Now consider the following base chain: select i ∈ {1, · · · , K} uniformly at random and
do the move x→ x′ with probability q̃(x′ | x) = p(x′i | {xj}j 6=i), if x′ and x differ at most
at coordinate i, and q̃(x′ | x) = 0 otherwise. This means that the new proposal state
differs from the old state at most at one random selected coordinate.

Show that the acceptance probability A(x′, x) = 1.

3) The sampling method of the previous question is called Gibbs sampling (or heat bath
dynamics or Glauber dynamics). Show that for the Ising model on an arbitrary graph
with distribution:

p(s) =
1

Z
exp(

∑
i,j∈E

Jklsksl +
∑
k∈V

hksk)

where (s1, · · · , sK) ∈ {−1,+1}K , the Gibbs sampling algorithm reduces to the following
simple rule:

(i) At time t select i ∈ {1, · · · , K} uniformly at random.
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(ii) Given the spin state st, the new spin state at time t+ 1 is the same for all j 6= i and
has si,t+1 = ±1 with probability

p(si,t+1 = ±1 | (sj,t)j∈MB(i)) =
1

2
(1± tanh(

∑
j∈MB(i)

Jijsj,t + hi))

where MB(i) = {j ∈ V | Jij 6= 0} is the Markov blanket of vertex i.

Problem 2: KL divergence (Barber 8.42)

Consider a ”Boltzman machine” distribution on binary variables xi ∈ {0, 1}, i = 1, . . . , D

p(x|W) =
1

Zp(W)
exp(xTWx)

We wish to fit p with another distribution q having the same form, i.e.,

q(x|U) =
1

Zq(U)
exp(xTUx)

1) Show that

arg min
U

KL(p|q) = arg max
U

{
Tr(UC)− logZq(U)

}
,

where Ci,j = Ep[xixj]. Explain from there, that in theory at least, the second-moment
matrix C is enough to fully specify p.

Problem 3: Naive Bayes classifier. Learning by counting. (Barber 10.4)

The Naive Bayes Classifier has a joint probability distribution over feature vectors x =
(x1, · · · , xK) and their class label of the form:

p(x, class) = p(class)
K∏
i=1

p(xi | class) .

This is a belief network with parent class and children x1, · · · , xK . For binary attributes
xi ∈ {0, 1} and two classes 0, 1 it is parametrized by:

θ1i = p(xi = 1|class = 1), θ0i = p(xi = 1|class = 0), p1 = p(class = 1), p0 = p(class = 0)

Given a data set (x(n), c(n)), n ∈ {1, · · · , N}, we can learn these parameters by counting.
Once this is done we classify a new sample x∗ in class = 0 if p(class = 0|x∗) > p(class = 1|x∗)
and classify it in class = 1 if p(class = 1|x∗) > p(class = 0|x∗).

1) Show that the decision to classify a datapoint x∗ as class 1 holds if wTx∗ + b > 0 for
some w and b. State explicitly w and b as a functions of θ1, θ0, p1, p0.
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Problem 4: Sigmoid Belief Network (Barber 11.7)

The sigmoid Belief Network is defined by the layered network

p(xL)
L∏
l=1

p(xl−1|xl)

p(xl−1|xl) =

wl∏
i=1

p(xl−1i |xl)

p(xl−1i = 1|xl) = σ(wT
i,lx

l),

where wl is the width of layer l, xl ∈ {0, 1}wl and σ(x) = 1/(1+e−x) is the sigmoid function.
The top layer p(xL) describes a factorized distribution p(xL1 ) . . . p(xLwL

).

1) Draw the Belief Network structure of this distribution

2) For layer x0, what is the computational complexity of computing the likelihood p(x0),
assuming that all layers have equal width w?

3) We assume that we have data where l = 0 is the only visble layer, the other ones l =
1, · · · , L being hidden, and that furthermore we have only one data point x0. Assuming
a fully factorized approximation for an equal width network (all wl = w)

p(x1, . . . ,xL|x0) ≈
L∏
l=1

w∏
i=1

q(xli),

write down the energy term of the Variational EM procedure (for a single data observation
x0) and the complexity of its computation.

Problem 5: EM algorithm for mixtures of Gaussians

Consider a mixture of D-dimensional isotropic Gaussians defined by

p(x) =
H∑
i=1

p(x|mi, σ
2
i )p(i)

p(x|mi, σ
2
i ) = (2πσ2

i )−D/2 exp
(
− 1

2σ2
i

‖x−mi‖2
)

1) Derive the optimal update rule for mi and σ2
i in the M-step of EM algorithm.

Problem 6: On gradient ascent for RBM’s

We want to learn the weight parameters Wij ∈ R of a Restricted Boltzmann Machine with
visible variables (v1, · · · , vK) and hidden (unobserved) variables (h1, · · · , hM). We assume
that all variables are in a finite alphabet.

p(v, h | W ) =
1

Z
exp

( K∑
i=1

M∑
j=1

Wijvihj

)
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Here we have assumed the bias terms
∑K

i=1 bivi +
∑M

j=1 cihi are zero for simplicity, i.e.,
bi = ci = 0 (but the exercise can be generalized). We have a set of visible data points

v
(1)
1 , · · · , v(N)

K with log-likelihood L(W ) (we assume that the data points are iid):

1) First, without assuming anything about the alphabet (apart that it is discrete and finite)
show that

∂

∂Wij

L(W ) =
N∑

n=1

(
Ep(hj |v(n),W )[v

(n)
i hj]− 〈vihj〉

)
In the literature the first expectation is called the “clamped average”. The second one
is the average w.r.t p(v, h | W ) written with the “Gibbs bracket notation“ 〈−〉. What is
the Markov blanket of the pair of nodes i, j in 〈vihj〉 ?

2) Now assuming that the hidden variables are binary in {−1,+1} show that this reduces
to

∂

∂Wij

L(W ) =
N∑

n=1

(
v
(n)
i tanh(

K∑
k=1

Wkjv
(n)
k )− 〈vihj〉

)
3) Note: When performing gradient ascent the first term is easy to compute. The second

one would typically be computed by MCMC but this is costly because in principle one
has to run the chain for a long time. The “contrastive divergence” algorithm of Hinton
uses a MCMC sampling method where the chain is cut after very few (in practice one or
two) time steps to obtain a stochastic estimator of the gradient.
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