Note on message-passing algorithm: 18 April 2019
(CS-526 Learning Theory

An illustrative example

Figure 1: A factor graph for p(x) and messages for computing the marginal p(x;)

The probability p(z) = Zx\mb p(x) for the above factor graph is directly proportional to
plxs) = Z Ji(@a, 20) oy, Te, wa) f3(2e) fa(wa) f5 (w4, xe).
Ta,Tc,Xd,Le

Suppose we want to compute p(x;). We can understand the computation as propagation
of messages on a tree. First we can split the sum in two parts:

Blan) = fil@a,w) Y foe, T, wa) fa(e) fa(wa) fo(e) = pran(s) pras ()

Te,Td,Te
N 2

NIH\b’(Ib) #2;17,(%)
Graphically, we have split the tree in two parts around node b. We call 111 _,4(z5) the message
from factor 1 to node b, and ps_,p(xp) the message from factor 2 to node b. They correspond
to the two red messages in Fig. 1.

The message 111_,4(x) can be written as
,ul—>b xb Zfl l’a,l'b A 1 = Zfl(l‘aaxb),ua—ﬂ(xa>
#a%l(xa) Ta

where p1,1(x,) is a message from the leaf node a to factor 1. This later message originating
from the leaf variable node is initialized to 1.

777777 / {»wu‘\ ,“AI)

The same procedure is applied to po_p(x). We split the sum in two separable parts:

MQ% SUb Z fa iUb,JUcaﬂﬁd)fz()f4($d)f5($d,$e)

L, Td,Te
= @y, we,) f3 2e) > falwa) f5(xa,)
Te, Tg Te
MC*)Z(Q;(,) _

ﬂd—}Q(zd)

The message pie—o(z:) = p3—e(x.) directly propagates the message from the leaf factor 3 to
node ¢ with the initialization ps_.(z.) = f3(z.):

The other message p1g2(x4) is split into

pasa(wa) = fulwa) Y fi(wa, xe)

xT
pa—sd(Tq)

ps—d(Ta)

Again, we initilialize the message from a leaf node p._5(x.) = 1 and write
pssa(wa) = Y fs(wa,me) - 1 =Y fo(@a, me)pess(we).
Le ,u‘e~>5($e) Te
Now, the messages are computed in decreasing order according to their distances from
node b in Fig. 1 — namely, blue, green, orange, and red.
The general rules that apply to trees
For any node b, assume we want to compute the marginal (the true marginal can be nor-

malized at the end)
ﬁ(xb) = Z H fv(xav)-

Xop U

We can compute p(z;) with the following rules.

Initilialization:

 For every leaf node a we initilialize the message pty—,(2,) = 1.

Propagation: Then the messages are computed in decreasing order according to their dis-
tances from node b.

o For non-leaf node a we compute the variable-to-factor message

/J“a—w(xa): H ,U/w—m(xa)- (]-)

weda\v

where da denotes the set of neigboring factors of a. This is called the “product rule”.

N

Ha—v (ﬂh)
—

o For non-leaf factor v we compute the factor-to-variable message

Mv—)a(ma) = Z fv(xmmav\a) H ,uc—w(l'c)- (2)

Xov\a CE@U\CL

where da denotes the set of neighoring factors of i. This is called the “sum rule”.

7

Hy—a (515{1

)
—I=0

(i@

Finally, we obtain p(x;) by taking products of all the incoming messages into node b:

]5(9%) = H ,qub(SUb)-

vEDb

With j(xp) it is easy to compute the true marginal probability p(zy) = p(zs)/ >, D(2s).

Complexity

The computational complexity mainly comes from the sum rule (2). Let z. € A. To compute

[tv—a(Zq) the size of sum is |A[*&") =1 When we consider the vector (ft—a(2a)), 4 We have

| A|9%&(®) terms. Suppose the tree has O(K) nodes. To compute p(z;) we have to propagate
the messages over O(K) edges so the complexity for this marginal is O(K|A|%*e®). In
order to compute the marginals for all nodes a priori we would then have a complexity
O(K?| A|%e®), But in fact we can propagate the messages from the leafs to node b and then
from node b back to the leafs assuming we store them. Once we know the messages going in

both directions for each edge we can compute all marginals so that the complexity can be
reduced to O(K|A|de®).

Key concept: distributive law

To compute

Z fl,z(xl, l‘2)f2,3($2, $3)

r1,23€A

there are |A|? terms. If we use distributive law to write it as

<Z f1,2(l‘1,$2)) (Z f2,3(I2,$3)>

r1€EA r3EA

4

then each sum contains |A| terms. The complexity would be computing the two |A| terms
plus a multiplcaition between the two sum.

Each time we have two operations that are distributive like (4, x) we can use this algo-
rithm.

An example is (min, +). We have

a + min(b, ¢) = min(a + b) + min(a + ¢).

We can apply the same rules to the optimization problem

This gives the "min-sum” algorithm.

General loopy factor graph

~ A
2 o~
= —> = —>
= P
P L
—7
—

For general loopy factor graph, we can use the same initialization if there are are leaf
nodes (in this figure the leaf factor nodes often exist because in Bayesian inference we have
a prior on the variables). Otherwise, if we do not have a prior (or if the prior is uniform) we
can use [, = 1. Then we repeat the parallel schedule:

« Run from nodes to factors (left to right) using (1).
e Run from factors to nodes (right to left) using (2).

The update is stopped when messages have converged (if they do). This method is often
good on locally-tree-like graphs (with large loops) but not always. The total complexity is
again O(K|A|de®).

