Exercise 6: 9*" and 16*" of April 2019
(CS-526 Learning Theory

Most of the following exercises are extracted from the books “Pattern Recognition and
Machine Learning” by Bishop and “Bayesian Reasoning and Machine Learning” by Barber.
Problem 1

Suppose we have some data (z;,;), ¢ = 1,...,m, where z;,5; € R and we want to find a
regression function y = f(x). We use a fully Bayesian model:

p
y=) war’ +¢,
a=1

where the inputs x ~ Py are iid and generated according to a prior Py and & ~ N(0, 0?) iid.
The w, € R are regression parameters. We take for w, the prior ~ e™*"a where « is a real
positive number. The parameters a and o? are supposed to be known. So our model for the
data generating process is

Dy |, w)D(w) = (2n0®) "2 220 Eems e By
1) Write down the joint distribution for (yi, ..., Ym, %1, ... Tm, W1, ... Wwp).

2) Draw a Belief Network (directed acyclic graph) corresponding to this probabilistic model.

3) Show that the maximum likelihood principle (take v = 0 or equivalently no prior on
w,’s) is equivalent to empirical risk minimisation in the hypothesis class of functions
Ho flx) =" wea®

4) Consider the MAP principle for estimating w,’s and show that it is equivalent to an
empirical risk minimization with additional penalty term proportional to " _, w? (this
is called ridge regression).

5) The ML or MAP estimates of w,’s are to viewed in general as summarized versions
of a more detailled object, namely the complete posterior distribution P(wy,...,w, |
(i, v:),). Show that the optimal regression function in a fully Bayesian approach is

f(I) = ZEwHata[wa]Ia

where E,4qtq is the expectation with respect to the posterior distribution
P(w17 <o, Wy | (xia yl)’:nzl)



Problem 2

For each case below, is a L b true? And is a 1L b|c true? If yes, prove your answer.
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Problem 3

Co-parent(i) Co-parent(i)

Consider a generic belief network (also called Bayesian network).
Let MB(i) = {pa(i), child(7), co-parent (i)} be the Markov blanket of ;. Show that

p(xil{z;tiz) = p(xil{zs boemp))-

Problem 4 (Bishop, p.371 & 419, Exercise 8.7)
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The linear-Gaussian models for the above graph consists of three random variables 1, xo, x3.
The model has the structure equations

Ty = Z wijzy +bi +/viei,  1=1,2,3

Jj€pa(i)

where pa(i) is the set of parent nodes of node ¢ (pa(1) = 0, pa(2) = {1}, pa(3) = {2}).
Show that the mean and covariance of the joint distribution for the above graph are given
by (hint: use a recursive calculation)

p= (b1, by + wa1by, by + w3sbe + w32wzlbl)T

U1 Wa21V1 W32W21V1
¥ = + w3 (v2 + w3, v1)
= W21V (%) Wy V1 W32\ V2 Wy V1
2 2 2
W3pW2 V1 W32V + W3 V1) U3 4 Wiy (v + Wi v1)
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Problem 5 (Barber, p.75, Exercise 4.4)

The restricted Boltzmann machine (RBM) is a constrained Boltzmann machine on a bipartite

graph, consisting of a layer of visible variables v .= (vy,-+-,vy)" and hidden variables
h = (hl,"' ,hH)TI

1

PV = 7R e

exp (VTWh +a'v+ bTh)

All variables are binary taking value 0 or 1. Here W is an V' x H matrix of weight W,.

1) Show that the distribution of hidden units conditional on the visible unit is factorized as
palv) =[] p(hilv),  with p(h; = 1]v) = a(bi +3 Wﬂvj)
( J

where o(z) = € /(1 4 €%).
2) By symmetry arguments, write down the form of the conditional p(v|h).

3) Is p(h) = [1; p(hi)?

4) Can the partition function Z(W,a, b) be computed efficiently for the RBM?

Problem 6 (Barber, p.77, Exercise 4.14)

Consider a pairwise binary Markov network defined on variables z; € {0,1}, i =1,..., N,
with p(x) = %Hijeg ¢ij(z;, ;) where £ is a given edge set and the factors ¢;; are arbitrary
(here edges are non necessarily maximal cliques). Explain how to translate such a Markov
network into a Boltzmann machine.

Problem 7

Let G = (V, E) an undirected graph whose vertices V' = {1,...,n} are associated to random
variables, and edges are given by the set of pairs F. For simplicity the random variables are
assumed to be discrete. Denote C the set of maximal cliques of G and consider a probability
distribution p(x) which factorizes as

) = 5 [Tvet).

where Z =3 Tloee Yo(x¢) and VO € C,Vx¢ : c(x¢) > 0. Remember that — for a Markov
Random Field — the Markov blanket 05 of a subset S C V is the set of all vertices that are
directly connected to a vertex in S and are not in S. Show that the following conditional
independence property is satisfied:

VS CV i p(xslxins) = p(xs|xas) -
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Problem 8 (Barber, p.99, Exercise 5.4)
Consider the hidden Markov model (HMM)

T
p(v,h) = U1|h1 HP Ut|ht ht|ht 1)
=2

in which dom(h:) = {1,...,H} and dom(h;) = {1,...,V} forallt =1,...,T.
1) Draw a belief network representation of the above distribution.

2) Show that the belief network for p(hy,...,hr) is a simple linear chain. Draw the belief
network corresponding to p(vi,...,vr) (this is called a fully connected cascade belief
network).

3) Draw a factor graph representation of the above distribution.

4) Use the factor graph to derive a Sum-Product algorithm to compute marginals p(h|vy, . . ., vr).
Explain the sequence order of messages passed on your factor graph.

5) Explain how to compute p(h¢, hey1|vy, ..., vr).

Problem 9 (Barber, p.98, Exercise 5.1)

Given a pairwise tree Markov network of the form

= %H¢<xi7xj>7

i~vj

explain how to efficiently compute the normalization factor (also called the partition func-
tion) Z as a function of the potentials ¢.

Problem 10 (Bishop, p.397 & 421, Exercise 8.16 & 8.17)
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The joint distribution for the above graph takes the form

p(x) = Z(ﬁl,z(iﬁ, T2)p23(T2, 3) - dn_1N(TN-1, TN).

The marginal probability p(z,) = > i1 ny, P(X) can be written as

.....

plan) = (s with Zy = 3 palmn)iis(on)

Tn



where p,(2,) is the message passing forward from node n — 1 to node n, and pg(x,) is the
message passing backward from node n + 1 to node n. The computation of ps(z,) and
ws(z,) can be done recursively by the following message passing equations:

fa(T2) = Z ¢1,2(5U1, )
pa(rn_1) = Z dn_1N(TN_1, 2N)

/Ja<$n) = Z an—l,n(xn—lu xn)/ﬁa(a;n—l)

Tn—1

Mﬁ(l’n) = Z ¢n7n+1(l‘n, $n+1)ﬂ,6’($n+1)

Tn+1

1) Discuss how to modify the above message passing algorithm in order to compute p(z,|zy)
efficiently.

2) Suppose N = 5, and nodes z3, x5 are observed. Show that if the message passing algo-
rithm is applied to the evaluation of p(zs|zs,x5), the result will be independent of the
value of xs.



