
Exercise 6: 9th and 16th of April 2019
CS-526 Learning Theory

Most of the following exercises are extracted from the books “Pattern Recognition and
Machine Learning” by Bishop and “Bayesian Reasoning and Machine Learning” by Barber.

Problem 1

Suppose we have some data (xi, yi), i = 1, . . . ,m, where xi, yi ∈ R and we want to find a
regression function y = f(x). We use a fully Bayesian model:

y =

p∑
a=1

wax
a + ξ,

where the inputs x ∼ P0 are iid and generated according to a prior P0 and ξ ∼ N (0, σ2) iid.
The wa ∈ R are regression parameters. We take for wa the prior ∼ e−αw

2
a where α is a real

positive number. The parameters α and σ2 are supposed to be known. So our model for the
data generating process is

D(y | x,w)D(x) = (2πσ2)−1/2e−
1

2σ2
(y−

∑p
a=1 wax

a)2P0(x)

1) Write down the joint distribution for (y1, . . . , ym, x1, . . . xm, w1, . . . wp).

2) Draw a Belief Network (directed acyclic graph) corresponding to this probabilistic model.

3) Show that the maximum likelihood principle (take α = 0 or equivalently no prior on
wa’s) is equivalent to empirical risk minimisation in the hypothesis class of functions
H 3 f(x) =

∑p
a=1wax

a.

4) Consider the MAP principle for estimating wa’s and show that it is equivalent to an
empirical risk minimization with additional penalty term proportional to α

∑p
a=1w

2
a (this

is called ridge regression).

5) The ML or MAP estimates of wa’s are to viewed in general as summarized versions
of a more detailled object, namely the complete posterior distribution P (w1, . . . , wp |
(xi, yi)

m
i=1). Show that the optimal regression function in a fully Bayesian approach is

f(x) =

p∑
a=1

Ew|data[wa]xa

where Ew|data is the expectation with respect to the posterior distribution
P (w1, . . . , wp | (xi, yi)mi=1).
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Problem 2

For each case below, is a ⊥⊥ b true? And is a ⊥⊥ b|c true? If yes, prove your answer.

a	 b	

c	

a	 b	

c	

a	 b	

c	

d	 e	

(1)	 (2)	 (3)	

Problem 3

xi	

Pa(i)	

Child(i)	

Pa(i)	

Child(i)	

Co-parent(i)	 Co-parent(i)	

Consider a generic belief network (also called Bayesian network).
Let MB(i) = {pa(i), child(i), co-parent(i)} be the Markov blanket of xi. Show that

p(xi|{xj}j 6=i) = p(xi|{xv}v∈MB(i)).

Problem 4 (Bishop, p.371 & 419, Exercise 8.7)

The linear-Gaussian models for the above graph consists of three random variables x1, x2, x3.
The model has the structure equations

xi =
∑
j∈pa(i)

wijxj + bi +
√
viεi, i = 1, 2, 3

where pa(i) is the set of parent nodes of node i (pa(1) = ∅, pa(2) = {1}, pa(3) = {2}).
Show that the mean and covariance of the joint distribution for the above graph are given

by (hint: use a recursive calculation)

µ = (b1, b2 + w21b1, b3 + w32b2 + w32w21b1)
>

Σ =

 v1 w21v1 w32w21v1
w21v1 v2 + w2

21v1 w32(v2 + w2
21v1)

w32w21v1 w32(v2 + w2
21v1) v3 + w2

32(v2 + w2
21v1)


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Problem 5 (Barber, p.75, Exercise 4.4)

The restricted Boltzmann machine (RBM) is a constrained Boltzmann machine on a bipartite
graph, consisting of a layer of visible variables v = (v1, · · · , vV )> and hidden variables
h = (h1, · · · , hH)>:

p(v,h) =
1

Z(W, a,b)
exp

(
v>Wh + a>v + b>h

)
All variables are binary taking value 0 or 1. Here W is an V ×H matrix of weight Wji.

1) Show that the distribution of hidden units conditional on the visible unit is factorized as

p(h|v) =
∏
i

p(hi|v), with p(hi = 1|v) = σ
(
bi +

∑
j

Wjivj

)
where σ(x) = ex/(1 + ex).

2) By symmetry arguments, write down the form of the conditional p(v|h).

3) Is p(h) =
∏

i p(hi)?

4) Can the partition function Z(W, a,b) be computed efficiently for the RBM?

Problem 6 (Barber, p.77, Exercise 4.14)

Consider a pairwise binary Markov network defined on variables xi ∈ {0, 1}, i = 1, . . . , N ,
with p(x) = 1

Z

∏
ij∈E φij(xi, xj) where E is a given edge set and the factors φij are arbitrary

(here edges are non necessarily maximal cliques). Explain how to translate such a Markov
network into a Boltzmann machine.

Problem 7

Let G = (V,E) an undirected graph whose vertices V = {1, . . . , n} are associated to random
variables, and edges are given by the set of pairs E. For simplicity the random variables are
assumed to be discrete. Denote C the set of maximal cliques of G and consider a probability
distribution p(x) which factorizes as

p(x) =
1

Z

∏
C∈C

ψC(xC) ,

where Z =
∑

x

∏
C∈C ψC(xC) and ∀C ∈ C,∀xC : ψC(xC) > 0. Remember that – for a Markov

Random Field – the Markov blanket ∂S of a subset S ⊆ V is the set of all vertices that are
directly connected to a vertex in S and are not in S. Show that the following conditional
independence property is satisfied:

∀S ⊆ V : p(xS|xV \S) = p(xS|x∂S) .
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Problem 8 (Barber, p.99, Exercise 5.4)

Consider the hidden Markov model (HMM)

p(v,h) = p(h1)p(v1|h1)
T∏
t=2

p(vt|ht)p(ht|ht−1)

in which dom(ht) = {1, . . . , H} and dom(ht) = {1, . . . , V } for all t = 1, . . . , T .

1) Draw a belief network representation of the above distribution.

2) Show that the belief network for p(h1, . . . , hT ) is a simple linear chain. Draw the belief
network corresponding to p(v1, . . . , vT ) (this is called a fully connected cascade belief
network).

3) Draw a factor graph representation of the above distribution.

4) Use the factor graph to derive a Sum-Product algorithm to compute marginals p(ht|v1, . . . , vT ).
Explain the sequence order of messages passed on your factor graph.

5) Explain how to compute p(ht, ht+1|v1, . . . , vT ).

Problem 9 (Barber, p.98, Exercise 5.1)

Given a pairwise tree Markov network of the form

p(x) =
1

Z

∏
i∼j

φ(xi, xj),

explain how to efficiently compute the normalization factor (also called the partition func-
tion) Z as a function of the potentials φ.

Problem 10 (Bishop, p.397 & 421, Exercise 8.16 & 8.17)

The joint distribution for the above graph takes the form

p(x) =
1

Z
φ1,2(x1, x2)φ2,3(x2, x3) · · ·φN−1,N(xN−1, xN).

The marginal probability p(xn) =
∑

i∈{1,...,N}\n p(x) can be written as

p(xn) =
1

Zn
µα(xn)µβ(xn) with Zn =

∑
xn

µα(xn)µβ(xn)
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where µα(xn) is the message passing forward from node n− 1 to node n, and µβ(xn) is the
message passing backward from node n + 1 to node n. The computation of µα(xn) and
µβ(xn) can be done recursively by the following message passing equations:

µα(x2) =
∑
x1

φ1,2(x1, x2)

µβ(xN−1) =
∑
xN

φN−1,N(xN−1, xN)

µα(xn) =
∑
xn−1

φn−1,n(xn−1, xn)µα(xn−1)

µβ(xn) =
∑
xn+1

φn,n+1(xn, xn+1)µβ(xn+1)

1) Discuss how to modify the above message passing algorithm in order to compute p(xn|xN)
efficiently.

2) Suppose N = 5, and nodes x3, x5 are observed. Show that if the message passing algo-
rithm is applied to the evaluation of p(x2|x3, x5), the result will be independent of the
value of x5.
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