
Homework 5 (2nd graded homework): 26 March 2019
CS-526 Learning Theory

The deadline is Tuesday, April 9 2019. Please hand in your homework during the lecture
(April 8) or the exercise session (April 9). No scan of handwritten homework is ac-
cepted.

Exercise 1 (adapted from J. Duchi)

Mn(R) is the Hilbert space of n×n real matrices endowed with the inner product 〈A,B〉 =
Tr(ATB). The induced norm is the Euclidian (or Frobenius) norm, i.e.,

‖A‖ =
√

Tr(ATA) =

(
n∑

i,j=1

(Aij)
2

)1/2

.

Consider the cone of n×n symmetric positive semi-definite matrices, denoted S+
n ⊆Mn(R).

For all A ∈ S+
n , λmax(A) is the maximum eigenvalue associated to A. We define

f :
S+
n → [0,+∞)
A 7→ λmax(A)

.

a) Show that f is convex.
b) Find a subgradient V ∈ ∂f(A) for any A ∈ S+

n .
Hint: A subgradient of f at A is a matrix V ∈ Rn×n that satisfies:

∀B ∈ S+
n : f(B) ≥ f(A) + Tr

(
(B − A)TV

)
.

Exercise 2 (adapted from 14.3, Understanding Machine Learning))

Let S = ((x1,y1), . . . , (xm,ym)) ∈ (Rd×{−1,+1})m. Assume that there exists w ∈ Rd such
that for every i ∈ [m] we have yi〈w,xi〉 ≥ 1, and let w? be a vector that has the minimal
norm among all vectors that satisfy the preceding requirement. Let R = maxi ‖xi‖. Define
a function f(w) = maxi∈[m](1− yi〈w,xi〉).
a) Show that minw:‖w‖≤‖w?‖ f(w) = 0.
b) Show that any w for which f(w) < 1 separates the examples in S.
c) Show how to calculate a subgradient of f .
d) Describe a subgradient descent algorithm for finding a w that separates the examples.
Show that the number of iterations T of your algorithm satisfies

T ≤ R2‖w∗‖2.

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for
the analysis.
e) (Ungraded) Compare your algorithm to the Batch Perceptron algorithm.
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Exercise 3 (adapted from 14.4, Understanding Machine Learning)

Algorithm 1: SGD with adaptive learning rate

parameters: T
initialize: w(1) = 0
for t = 1 . . . T do

Choose a random vector vt s.t. E[vt|w(t)] ∈ ∂f(w(t))
Set ηt = B/ρ

√
t

Set w(t+1/2) = w(t) − ηtvt.
Set w(t+1) = arg miny:‖y‖≤B ‖w(t+1/2) − y‖.

end

output: w̄ = 1
T

∑T
t=1w

(t)

Prove the following theorem on the above algorithm and specify the constant α > 0.

Theorem 1. Let B, ρ > 0. Let f be a convex function and let w? ∈ arg minw:‖w‖≤B f(w).

Assume that SGD is run for T iterations with ηt = B
ρ
√
t
. Assume also that for all t, E‖vt‖2 ≤

ρ2. Then

Ev1:T
[f(w̄)]− f(w?) ≤ α · ρB√

T

Exercise 4 (6.3 from Understanding Machine Learning)

Let X be the Boolean hypercube {0, 1}n. For a set I ⊆ {1, 2, . . . , n} we denote a parity
function hI as follows. On a binary vector x = (x1, x2, . . . , xn) ∈ {0, 1}n,

hI(x) =
∑
i∈I

xi mod 2 .

(That is, hI computes parity of bits in I.) What is the VC-dimension of the class of all such
parity functions,

Hn−parity = {hI : I ⊆ {1, 2, . . . , n}}?
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