The deadline is Tuesday, April 9 2019. Please hand in your homework during the lecture (April 8) or the exercise session (April 9). No scan of handwritten homework is accepted.

Exercise 1 (adapted from J. Duchi)

 $\mathcal{M}_n(\mathbb{R})$ is the Hilbert space of $n \times n$ real matrices endowed with the inner product $\langle A, B \rangle = \text{Tr}(A^T B)$. The induced norm is the Euclidian (or Frobenius) norm, i.e.,

$$||A|| = \sqrt{\operatorname{Tr}(A^T A)} = \left(\sum_{i,j=1}^n (A_{ij})^2\right)^{1/2}.$$

Consider the cone of $n \times n$ symmetric positive semi-definite matrices, denoted $\mathcal{S}_n^+ \subseteq \mathcal{M}_n(\mathbb{R})$. For all $A \in \mathcal{S}_n^+$, $\lambda_{\max}(A)$ is the maximum eigenvalue associated to A. We define

$$f: \begin{array}{ccc} \mathcal{S}_n^+ &
ightarrow & [0,+\infty) \ A & \mapsto & \lambda_{\max}(A) \end{array}$$

a) Show that f is convex.

b) Find a subgradient $V \in \partial f(A)$ for any $A \in \mathcal{S}_n^+$.

Hint: A subgradient of f at A is a matrix $V \in \mathbb{R}^{n \times n}$ that satisfies:

$$\forall B \in \mathcal{S}_n^+ : f(B) \ge f(A) + \operatorname{Tr}((B - A)^T V).$$

Exercise 2 (adapted from 14.3, Understanding Machine Learning))

Let $S = ((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)) \in (\mathbb{R}^d \times \{-1, +1\})^m$. Assume that there exists $\mathbf{w} \in \mathbb{R}^d$ such that for every $i \in [m]$ we have $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1$, and let \mathbf{w}^* be a vector that has the minimal norm among all vectors that satisfy the preceding requirement. Let $R = \max_i ||\mathbf{x}_i||$. Define a function $f(\mathbf{w}) = \max_{i \in [m]} (1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle)$.

a) Show that $\min_{\mathbf{w}: \|\mathbf{w}\| \le \|\mathbf{w}^{\star}\|} f(\mathbf{w}) = 0.$

b) Show that any **w** for which $f(\mathbf{w}) < 1$ separates the examples in S.

c) Show how to calculate a subgradient of f.

d) Describe a subgradient descent algorithm for finding a \mathbf{w} that separates the examples. Show that the number of iterations T of your algorithm satisfies

$$T \le R^2 \|\mathbf{w}^*\|^2$$

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for the analysis.

e) (Ungraded) Compare your algorithm to the Batch Perceptron algorithm.

Algorithm 1: SGD with adaptive learning rate

Prove the following theorem on the above algorithm and specify the constant $\alpha > 0$.

Theorem 1. Let $B, \rho > 0$. Let f be a convex function and let $\mathbf{w}^* \in \arg\min_{\mathbf{w}:\|\mathbf{w}\| \leq B} f(\mathbf{w})$. Assume that SGD is run for T iterations with $\eta_t = \frac{B}{\rho\sqrt{t}}$. Assume also that for all t, $\mathbb{E}\|\mathbf{v}_t\|^2 \leq \rho^2$. Then

$$\mathbb{E}_{\mathbf{v}_{1:T}}[f(\bar{\mathbf{w}})] - f(\mathbf{w}^{\star}) \le \alpha \cdot \frac{\rho B}{\sqrt{T}}$$

Exercise 4 (6.3 from Understanding Machine Learning)

Let \mathcal{X} be the Boolean hypercube $\{0,1\}^n$. For a set $I \subseteq \{1,2,\ldots,n\}$ we denote a parity function h_I as follows. On a binary vector $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in \{0,1\}^n$,

$$h_I(\mathbf{x}) = \sum_{i \in I} x_i \mod 2.$$

(That is, h_I computes parity of bits in I.) What is the VC-dimension of the class of all such parity functions,

$$\mathcal{H}_{n-parity} = \{h_I : I \subseteq \{1, 2, \dots, n\}\}$$