ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 13

Principles of Digital Communications Mar. 22, 2018

Solutions to Quiz 1

Solution 1.

In binary hypothesis testing, the statistic $T(\mathbf{Y})$ is a sufficient if and only if the log-likelihood ratio can be specified by $T(\mathbf{Y})$. For our problem, the log-likelihood ratio is given by

$$\log\left(\frac{p_H(1)f_{\mathbf{Y}|H}(\mathbf{y}|H=1)}{p_H(0)f_{\mathbf{Y}|H}(\mathbf{y}|H=0)}\right) = -\frac{n}{2}\log(2) + \log\left(\frac{p_H(1)}{p_H(0)}\right) + \sum_{i=1}^n \frac{y_i^2}{4}.$$

Therefore, for each of the proposed statistics, we need to see if it fully determines the value of the log-likelihood ratio. Going in this direction, we have:

- (a) $T_1(\mathbf{Y}) = \sum_i Y_i$. (Not a sufficient statistic)
- (b) $T_2(\mathbf{Y}) = \sum_i Y_i^2$. (Sufficient statistic)
- (c) $T_3(\mathbf{Y}) = \sum_i |Y_i|$. (Not a sufficient statistic)
- (d) $T_4(\mathbf{Y}) = \max_i |Y_i|$. (Not a sufficient statistic)

SOLUTION 2.

(a) The variable \tilde{Y} is a sufficient statistic. We can perform Fisher-Neyman factorization on the output conditional probability density function :

$$f_{Y_1,Y_2|H}(y_1,y_2|i) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(y_1 - a_i)^2 + (y_2 + a_i)^2}{2\sigma^2}\right)$$
$$= \exp\left(\frac{a_i}{\sigma^2}(y_1 - y_2 - a_i)\right) \left(\frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2\sigma^2}(y_1^2 + y_2^2)\right)\right)$$

Using the Fisher-Neyman Factorization Theorem, we see that

$$T(y_1, y_2) = y_1 - y_2$$

$$g_i(x) = \exp\left(\frac{a_i}{\sigma^2}(x - a_i)\right)$$

$$h(y) = \frac{1}{2\pi\sigma^2}\exp\left(-\frac{1}{2\sigma^2}(y_1^2 + y_2^2)\right)$$

(b) The variable \tilde{Y} can also be written as,

$$\tilde{Y} = 2a_i + \underbrace{Z_1 - Z_2}_{\tilde{Z}}.$$

The noise term \tilde{Z} will have a Gaussian distribution with variance $2\sigma^2$. We can compare it with the new observation given in the problem, 2U (note that scaling does not change the error probability),

$$2U = 2a_i + 2W$$

The noise term 2W is Gaussian distributed with variance $\frac{4\sigma^2}{3}$. We can see that both noise terms are Gaussian distributed with the noise term in 2U having smaller variance. Therefore, we should choose the new observation U.

SOLUTION 3.

(a) The log-likelihood ratio is given by

$$\log\left(\frac{f_{Y|H}(y|H=1)}{f_{Y|H}(y|H=0)}\right) = |y-1| - |y+1|.$$

Due to assumption of equally-likely hypotheses, the following decision rule minimizes the error probability,

$$|y-1| - |y+1| \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} 0,$$

which is equivalent to

$$y \stackrel{\hat{H}=0}{\underset{\hat{H}=1}{\geq}} 0.$$

(b) For the optimal decision rule we computed in (a), the decision boundary is given by y = 0. We can calculate the probability of error given H = 1 as

$$P(\hat{H} = 0|H = 1) = \int_{1}^{\infty} \frac{1}{2} \exp(-y) \ dy = \frac{e^{-1}}{2}.$$

By symmetry we have the error probability $P_e = P(\hat{H} = 0 \mid H = 1) = P(\hat{H} = 1 \mid H = 0)$.

(c) The Bhattacharyya bound is given by

$$P_{e} \leq \int_{-\infty}^{\infty} \sqrt{f_{Y|H}(y|H=0) f_{Y|H}(y|H=1)} dy$$
$$= \frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-\frac{|y-1|+|y+1|}{2}\right) dy.$$

The exponent can be represented as a piecewise linear function

$$-\frac{|y-1|+|y+1|}{2} = \begin{cases} y & y < -1\\ -1 & -1 \le y \le 1\\ -y & y > 1. \end{cases}$$

We divide the integration region according to these intervals such that we have

2

$$P_{e} \leq \frac{1}{2} \left(\int_{-\infty}^{-1} e^{y} dy + \int_{-1}^{1} e^{-1} dy + \int_{1}^{\infty} e^{-y} dy \right)$$
$$= \frac{1}{2} \left(e^{-1} + 2e^{-1} + e^{-1} \right)$$
$$= 2e^{-1}.$$