In this exercise we review the proof of Hoeffding's inequality.

1. Let $\lambda > 0$. Let X be a random variable such that $a \leq X \leq b$ and $\mathbb{E}[X] = 0$. By considering the convex function $f(X) = e^{\lambda X}$, show that

$$\mathbb{E}[e^{\lambda X}] \le \frac{b}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b}.$$
(1)

2. Let p = -a/(b-a) and $h = \lambda(b-a)$. Verify that the right hand side of (1) equals $e^{L(h)}$, where

$$L(h) = -hp + \log(1 - p + pe^h).$$

3. Taylor's theorem tells that

$$L(h) = L(0) + hL'(0) + \frac{h^2}{2}L''(\xi)$$

for some $\xi \in (0, h)$. Show that $L(h) \leq h^2/8$ and hence $\mathbb{E}[e^{\lambda X}] \leq e^{-\lambda^2 (a-b)^2/8}$.

4. Let Z_1, \ldots, Z_m be i.i.d. random variables such that $a \leq Z_i \leq b$ and $\mathbb{E}[Z_i] = \mu$. Using Markov's inequality and the above, show that for every $\lambda > 0$ and $\epsilon > 0$

$$\mathbb{P}\left(\frac{1}{m}\sum_{i=1}^{m} Z_i - \mu \ge \epsilon\right) \le \exp\left(-\lambda\epsilon + \frac{\lambda^2(b-a)^2}{8m}\right).$$

(Recall the statement of Markov's inequality: if X is a non-negative random variable and c > 0, then $\mathbb{P}(X \ge c) \le \mathbb{E}(X)/c$.

5. Show that

$$\mathbb{P}\left(\frac{1}{m}\sum_{i=1}^{m} Z_i - \mu \ge \epsilon\right) \le \exp\left(-\frac{2m\epsilon^2}{(b-a)^2}\right).$$